Content deleted Content added
Countercheck (talk | contribs) copyedit of first half of article; converted px to upright; removed more citations section tag. |
Countercheck (talk | contribs) light copyedit of second half of article |
||
Line 78:
===Recent limits===
[[File:Direct Detection Constraints.png |frame|
There are currently no confirmed detections of dark matter from direct detection experiments, with the strongest exclusion limits coming from the [[Large Underground Xenon experiment|LUX]] and [[Cryogenic Dark Matter Search|SuperCDMS]] experiments, as shown in figure 2.
Line 87:
</ref> and this was confirmed after the final data run ended in May 2016.<ref>[https://www.science.org/content/article/dark-matter-search-comes-empty Dark matter search comes up empty. July 2016]</ref>
Historically there have been four anomalous sets of data from different direct detection experiments, two of which have now been explained with backgrounds ([[CoGeNT]] and CRESST-II), and two which remain unexplained ([[DAMA/LIBRA]] and [[Cryogenic Dark Matter Search|CDMS-Si]]).<ref>{{cite journal |title=Largest-ever dark-matter experiment poised to test popular theory |url=http://www.nature.com/news/largest-ever-dark-matter-experiment-poised-to-test-popular-theory-1.18772 |journal=Nature |access-date=15 January 2017|doi=10.1038/nature.2015.18772 |year=2015 |last1=Cartlidge |first1=Edwin |s2cid=182831370 }}</ref><ref>{{cite journal |last1=Davis |first1=Jonathan H. |date=2015 |title=The Past and Future of Light Dark Matter Direct Detection |journal=
|url = http://cdms.berkeley.edu/0912.3592v1.pdf
|title = Results from the Final Exposure of the CDMS II Experiment
Line 103 ⟶ 102:
|archive-url = https://web.archive.org/web/20100618221140/http://cdms.berkeley.edu/results_summary.pdf
|archive-date = 2010-06-18
}}</ref><ref>{{cite journal |author=The CDMS II Collaboration |date=2010 |title=Dark Matter Search Results from the CDMS II Experiment |journal=Science
[[CoGeNT]], a smaller detector using a single germanium puck, designed to sense WIMPs with smaller masses, reported hundreds of detection events in 56 days.<ref name="NN-2010-02-26">{{cite journal |author=Hand |first=Eric |date=2010-02-26 |title=A CoGeNT result in the hunt for dark matter |url=http://www.nature.com/news/2010/100226/full/news.2010.97.html
Annual modulation is one of the predicted signatures of a WIMP signal,<ref>{{cite journal|last1=Drukier|first1=Andrzej K.|last2=Freese|first2=Katherine|last3=Spergel|first3=David N.|title=Detecting cold dark-matter candidates|journal=Physical Review D|date=15 June 1986|volume=33|issue=12|pages=3495–3508|doi=10.1103/PhysRevD.33.3495|pmid=9956575|bibcode=1986PhRvD..33.3495D}}</ref><ref name="Freese1988">{{cite journal |author=Freese |first=K.
The [[Korea Invisible Mass Search#COSINE|COSINE-100]] collaboration (a merging of KIMS and DM-Ice groups) published their results on replicating the DAMA/LIBRA signal in December 2018 in journal Nature; their conclusion was that "this result rules out WIMP–nucleon interactions as the cause of the annual modulation observed by the DAMA collaboration".<ref>{{Cite journal | doi=10.1038/s41586-018-0739-1|pmid = 30518890| title=An experiment to search for dark-matter interactions using sodium iodide detectors| journal=Nature| volume=564| issue=7734| pages=83–86| year=2018| author1=COSINE-100 Collaboration| bibcode=2018Natur.564...83C|arxiv = 1906.01791|s2cid = 54459495}}</ref> In 2021 new results from COSINE-100 and [[ANAIS-112]] both failed to replicate the DAMA/LIBRA signal<ref>{{Cite journal |last1=Amaré |first1=J. |last2=Cebrián |first2=S. |last3=Cintas |first3=D. |last4=Coarasa |first4=I. |last5=García |first5=E. |last6=Martínez |first6=M. |last7=Oliván |first7=M. A. |last8=Ortigoza |first8=Y. |last9=de Solórzano |first9=A. Ortiz |last10=Puimedón |first10=J. |last11=Salinas |first11=A. |date=2021-05-27 |title=Annual modulation results from three-year exposure of ANAIS-112 |url=https://link.aps.org/doi/10.1103/PhysRevD.103.102005 |journal=Physical Review D |language=en |volume=103 |issue=10 |pages=102005 |arxiv=2103.01175 |bibcode=2021PhRvD.103j2005A |doi=10.1103/PhysRevD.103.102005 |issn=2470-0010 |s2cid=232092298}}</ref><ref>{{Cite journal |last1=Adhikari |first1=Govinda |last2=de Souza |first2=Estella B. |last3=Carlin |first3=Nelson |last4=Choi |first4=Jae Jin |last5=Choi |first5=Seonho |last6=Djamal |first6=Mitra |last7=Ezeribe |first7=Anthony C. |last8=França |first8=Luis E. |last9=Ha |first9=Chang Hyon |last10=Hahn |first10=In Sik |last11=Jeon |first11=Eunju |date=2021-11-12 |title=Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target |journal=Science Advances |language=en |volume=7 |issue=46 |pages=eabk2699 |bibcode=2021SciA....7.2699A |doi=10.1126/sciadv.abk2699 |issn=2375-2548 |pmc=8580298 |pmid=34757778|arxiv=2104.03537 }}</ref><ref>{{Cite web |title=Is the end in sight for famous dark matter claim? |url=https://www.science.org/content/article/end-sight-famous-dark-matter-claim |access-date=2021-12-29 |website=www.science.org |language=en}}</ref> and in August 2022 COSINE-100 applied an analysis method similar to one used by DAMA/LIBRA and found a similar annual modulation suggesting the signal could be just a statistical artifact<ref>{{cite journal |last1=Adhikari |first1=G. |last2=Carlin |first2=N. |last3=Choi |first3=J. J. |last4=Choi |first4=S. |last5=Ezeribe |first5=A. C. |last6=Franca |first6=L. E. |last7=Ha |first7=C. |last8=Hahn |first8=I. S. |last9=Hollick |first9=S. J. |last10=Jeon |first10=E. J. |last11=Jo |first11=J. H. |last12=Joo |first12=H. W. |last13=Kang |first13=W. G. |last14=Kauer |first14=M. |last15=Kim |first15=B. H. |date=2023 |title=An induced annual modulation signature in COSINE-100 data by DAMA/LIBRA's analysis method |journal=Scientific Reports |volume=13 |issue=1 |page=4676 |doi=10.1038/s41598-023-31688-4 |pmid=36949218 |pmc=10033922 |arxiv=2208.05158 |bibcode=2023NatSR..13.4676A }}</ref><ref>{{Cite journal |last=Castelvecchi |first=Davide |date=2022-08-16 |title=Notorious dark-matter signal could be due to analysis error |url=https://www.nature.com/articles/d41586-022-02222-9 |journal=Nature |language=en |doi=10.1038/d41586-022-02222-9|pmid=35974221 |s2cid=251624302 }}</ref> supporting a hypothesis first put forward on 2020.<ref>{{cite journal |author=Buttazzo |first=D.
===The future of direct detection===
Line 116 ⟶ 115:
The 2020s should see the emergence of several multi-tonne mass direct detection experiments, which will probe WIMP-nucleus cross sections orders of magnitude smaller than the current state-of-the-art sensitivity. Examples of such next-generation experiments are LUX-ZEPLIN (LZ) and XENONnT, which are multi-tonne liquid xenon experiments, followed by DARWIN, another proposed liquid xenon direct detection experiment of 50–100 tonnes.<ref>{{cite arXiv |eprint=1110.0103|last1= Malling|first1= D. C.|title= After LUX: The LZ Program |display-authors= etal |class= astro-ph.IM|year= 2011}}</ref><ref>{{cite journal |last1=Baudis |first1=Laura |title=DARWIN: dark matter WIMP search with noble liquids |journal=J. Phys. Conf. Ser. |date=2012 |volume=375 |issue=1 |page=012028 |doi=10.1088/1742-6596/375/1/012028 |arxiv=1201.2402|bibcode=2012JPhCS.375a2028B |s2cid=30885844 }}</ref>
Such multi-tonne experiments will also face a new background in the form of neutrinos, which will limit their ability to probe the WIMP parameter space beyond a certain point, known as the neutrino floor. However, although its name may imply a hard limit, the neutrino floor represents the region of parameter space beyond which experimental sensitivity can only improve at best as the square root of exposure (the product of detector mass and running time).<ref>{{cite journal |last1=Billard |first1=J. |last2=Strigari |first2=L. |last3=Figueroa-Feliciano |first3=E. |date=2014 |title=Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments |journal=
In December 2021, results from [[PandaX]] have found no signal in their data, with a lowest excluded cross section of <math>3.8\times10^{-47} cm^2</math> at 40 GeV with 90% confidence level.<ref name="Meng et al-2021">{{Cite journal|last1=Meng|first1=Yue|last2=Wang|first2=Zhou|last3=Tao|first3=Yi|last4=Abdukerim|first4=Abdusalam|last5=Bo|first5=Zihao|last6=Chen|first6=Wei|last7=Chen|first7=Xun|last8=Chen|first8=Yunhua|last9=Cheng|first9=Chen|last10=Cheng|first10=Yunshan|last11=Cui|first11=Xiangyi|date=2021-12-23|title=Dark Matter Search Results from the PandaX-4T Commissioning Run|url=https://link.aps.org/doi/10.1103/PhysRevLett.127.261802|journal=Physical Review Letters|language=en|volume=127|issue=26|pages=261802|doi=10.1103/PhysRevLett.127.261802|pmid=35029500| arxiv=2107.13438 | bibcode=2021PhRvL.127z1802M |s2cid=236469421|issn=0031-9007}}</ref><ref name="Stephens-2021">{{Cite journal|last=Stephens|first=Marric|date=2021-12-23|title=Tightening the Net on Two Kinds of Dark Matter|url=https://physics.aps.org/articles/v14/s164|journal=Physics|language=en|volume=14| doi=10.1103/Physics.14.s164 | bibcode=2021PhyOJ..14.s164S | s2cid=247277808 |doi-access=free}}</ref>
Line 159 ⟶ 158:
}}
*{{Cite journal |last1=Cerdeño |first1=David G. |last2=Green |first2=Anne M. |editor1-first=Gianfranco |editor1-last=Bertone |title=Direct detection of WIMPs |journal=Particle Dark Matter: Observations, Models and Searches |date=2010 |pages=347–369 |arxiv=1002.1912 |doi=10.1017/CBO9780511770739.018|isbn=9780511770739 |s2cid=119311963 }}
*{{cite journal |last1=Davis |first1=Jonathan H. |title=The Past and Future of Light Dark Matter Direct Detection |journal=
*{{cite journal |title=Update on the Halo-independent Comparison of Direct Dark Matter Detection Data |year=2015 |journal=Physics Procedia |doi=10.1016/j.phpro.2014.12.009 |volume=61 |pages=45–54 |last1=Del Nobile |first1=Eugenio |last2=Gelmini |first2=Graciela B. |last3=Gondolo |first3=Paolo |last4=Huh |first4=Ji-Haeng |bibcode=2015PhPro..61...45D |arxiv = 1405.5582 }}
==External links==
*[http://pdg.lbl.gov/2004/listings/s030.pdf Particle Data Group review article on WIMP search] (S. Eidelman et al. (Particle Data Group),
*[[Timothy J. Sumner]], [https://web.archive.org/web/20061020063709/http://relativity.livingreviews.org/Articles/lrr-2002-4/index.html Experimental Searches for Dark Matter] in Living Reviews in Relativity, Vol 5, 2002.
*[https://www.newscientist.com/article/mg21929320.700-out-of-the-shadows-picking-up-hints-of-dark-matter.html Portraits of darkness, New Scientist, August 31, 2013. Preview only.]
*{{Cite AV media|url=https://www.youtube.com/watch?v=3YMWHkFW5VA |archive-url=https://ghostarchive.org/varchive/youtube/20211211/3YMWHkFW5VA| archive-date=2021-12-11 |url-status=live|title=The WIMP is dead. Long live the WIMP!|date=13 April 2018|last=Hooper|first=Dan|type=video; colloquium|publisher=Brown University Department of Physics|author-link=Dan Hooper}}{{cbignore}}
|