'''Non-separable kernels''' - Separable kernels are limited, in particular they do not account for structures in the interaction space between the input and output domains jointly. Future work is needed to develop models for these kernels.
==Applications==
===Spam filtering===
Using the principles of MTL, techniques for collaborative [[spam filtering]] that facilitates personalization have been proposed. In large scale open membership email systems, most users do not label enough messages for an individual local [[classifier (mathematics)|classifier]] to be effective, while the data is too noisy to be used for a global filter across all users. A hybrid global/individual classifier can be effective at absorbing the influence of users who label emails very diligently from the general public. This can be accomplished while still providing sufficient quality to users with few labeled instances.<ref>Attenberg, J., Weinberger, K., & Dasgupta, A. Collaborative Email-Spam Filtering with the Hashing-Trick. http://www.cse.wustl.edu/~kilian/papers/ceas2009-paper-11.pdf {{Webarchive|url=https://web.archive.org/web/20110401065715/http://www.cse.wustl.edu/~kilian/papers/ceas2009-paper-11.pdf |date=2011-04-01 }}</ref>
===Web search===
Using boosted [[decision trees]], one can enable implicit data sharing and regularization. This learning method can be used on web-search ranking data sets. One example is to use ranking data sets from several countries. Here, multitask learning is particularly helpful as data sets from different countries vary largely in size because of the cost of editorial judgments. It has been demonstrated that learning various tasks jointly can lead to significant improvements in performance with surprising reliability.<ref>Chappelle, O., Shivaswamy, P., & Vadrevu, S. Multi-Task Learning for Boosting
with Application to Web Search Ranking. http://www.cse.wustl.edu/~kilian/papers/multiboost2010.pdf {{Webarchive|url=https://web.archive.org/web/20110401065926/http://www.cse.wustl.edu/~kilian/papers/multiboost2010.pdf |date=2011-04-01 }}</ref>
==Software package==
A Matlab package called Multi-Task Learning via StructurAl Regularization (MALSAR) <ref>Zhou, J., Chen, J. and Ye, J. MALSAR: Multi-tAsk Learning via StructurAl Regularization. Arizona State University, 2012. http://www.public.asu.edu/~jye02/Software/MALSAR. [http://www.public.asu.edu/~jye02/Software/MALSAR/Manual.pdf On-line manual]</ref> implements the following multi-task learning algorithms: Mean-Regularized Multi-Task Learning<ref>Evgeniou, T., & Pontil, M. (2004). [https://web.archive.org/web/20171212193041/https://pdfs.semanticscholar.org/1ea1/91c70559d21be93a4d128f95943e80e1b4ff.pdf Regularized multi–task learning]. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 109–117).</ref><ref>{{cite journal | last1 = Evgeniou | first1 = T. | last2 = Micchelli | first2 = C. | last3 = Pontil | first3 = M. | year = 2005 | title = Learning multiple tasks with kernel methods | url = http://jmlr.org/papers/volume6/evgeniou05a/evgeniou05a.pdf | journal = Journal of Machine Learning Research | volume = 6 | page = 615 }}</ref>, Multi-Task Learning with Joint Feature Selection<ref>{{cite journal | last1 = Argyriou | first1 = A. | last2 = Evgeniou | first2 = T. | last3 = Pontil | first3 = M. | year = 2008a | title = Convex multi-task feature learning | journal = Machine Learning | volume = 73 | issue = 3| pages = 243–272 | doi=10.1007/s10994-007-5040-8| doi-access = free }}</ref>, Robust Multi-Task Feature Learning<ref>Chen, J., Zhou, J., & Ye, J. (2011). [https://www.academia.edu/download/44101186/Integrating_low-rank_and_group-sparse_st20160325-15067-1mftmbg.pdf Integrating low-rank and group-sparse structures for robust multi-task learning]{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.</ref>, Trace-Norm Regularized Multi-Task Learning<ref>Ji, S., & Ye, J. (2009). [http://www.machinelearning.org/archive/icml2009/papers/151.pdf An accelerated gradient method for trace norm minimization]. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 457–464).</ref>, Alternating Structural Optimization<ref>{{cite journal | last1 = Ando | first1 = R. | last2 = Zhang | first2 = T. | year = 2005 | title = A framework for learning predictive structures from multiple tasks and unlabeled data | url = http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf | journal = The Journal of Machine Learning Research | volume = 6 | pages = 1817–1853 }}</ref><ref>Chen, J., Tang, L., Liu, J., & Ye, J. (2009). [http://leitang.net/papers/ICML09_CASO.pdf A convex formulation for learning shared structures from multiple tasks]. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 137–144).</ref>, Incoherent Low-Rank and Sparse Learning<ref>Chen, J., Liu, J., & Ye, J. (2010). [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783291/ Learning incoherent sparse and low-rank patterns from multiple tasks]. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1179–1188).</ref>, Robust Low-Rank Multi-Task Learning, Clustered Multi-Task Learning<ref>Jacob, L., Bach, F., & Vert, J. (2008). [https://hal-ensmp.archives-ouvertes.fr/docs/00/32/05/73/PDF/cmultitask.pdf Clustered multi-task learning: A convex formulation]. Advances in Neural Information Processing Systems, 2008</ref><ref>Zhou, J., Chen, J., & Ye, J. (2011). [http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization.pdf Clustered multi-task learning via alternating structure optimization]. Advances in Neural Information Processing Systems.</ref>, Multi-Task Learning with Graph Structures.
The Multi-Task Learning via StructurAl Regularization (MALSAR) Matlab package<ref>Zhou, J., Chen, J. and Ye, J. MALSAR: Multi-tAsk Learning via StructurAl Regularization. Arizona State University, 2012. http://www.public.asu.edu/~jye02/Software/MALSAR. [http://www.public.asu.edu/~jye02/Software/MALSAR/Manual.pdf On-line manual]</ref> implements the following multi-task learning algorithms:
* Mean-Regularized Multi-Task Learning<ref>Evgeniou, T., & Pontil, M. (2004). [https://web.archive.org/web/20171212193041/https://pdfs.semanticscholar.org/1ea1/91c70559d21be93a4d128f95943e80e1b4ff.pdf Regularized multi–task learning]. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 109–117).</ref><ref>{{cite journal | last1 = Evgeniou | first1 = T. | last2 = Micchelli | first2 = C. | last3 = Pontil | first3 = M. | year = 2005 | title = Learning multiple tasks with kernel methods | url = http://jmlr.org/papers/volume6/evgeniou05a/evgeniou05a.pdf | journal = Journal of Machine Learning Research | volume = 6 | page = 615 }}</ref>
* Multi-Task Learning with Joint Feature Selection<ref>{{cite journal | last1 = Argyriou | first1 = A. | last2 = Evgeniou | first2 = T. | last3 = Pontil | first3 = M. | year = 2008a | title = Convex multi-task feature learning | journal = Machine Learning | volume = 73 | issue = 3| pages = 243–272 | doi=10.1007/s10994-007-5040-8| doi-access = free }}</ref>
* Robust Multi-Task Feature Learning<ref>Chen, J., Zhou, J., & Ye, J. (2011). [https://www.academia.edu/download/44101186/Integrating_low-rank_and_group-sparse_st20160325-15067-1mftmbg.pdf Integrating low-rank and group-sparse structures for robust multi-task learning]{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.</ref>
* Trace-Norm Regularized Multi-Task Learning<ref>Ji, S., & Ye, J. (2009). [http://www.machinelearning.org/archive/icml2009/papers/151.pdf An accelerated gradient method for trace norm minimization]. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 457–464).</ref>
* Alternating Structural Optimization<ref>{{cite journal | last1 = Ando | first1 = R. | last2 = Zhang | first2 = T. | year = 2005 | title = A framework for learning predictive structures from multiple tasks and unlabeled data | url = http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf | journal = The Journal of Machine Learning Research | volume = 6 | pages = 1817–1853 }}</ref><ref>Chen, J., Tang, L., Liu, J., & Ye, J. (2009). [http://leitang.net/papers/ICML09_CASO.pdf A convex formulation for learning shared structures from multiple tasks]. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 137–144).</ref>
* Incoherent Low-Rank and Sparse Learning<ref>Chen, J., Liu, J., & Ye, J. (2010). [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783291/ Learning incoherent sparse and low-rank patterns from multiple tasks]. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1179–1188).</ref>
* Robust Low-Rank Multi-Task Learning
* Clustered Multi-Task Learning<ref>Jacob, L., Bach, F., & Vert, J. (2008). [https://hal-ensmp.archives-ouvertes.fr/docs/00/32/05/73/PDF/cmultitask.pdf Clustered multi-task learning: A convex formulation]. Advances in Neural Information Processing Systems, 2008</ref><ref>Zhou, J., Chen, J., & Ye, J. (2011). [http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization.pdf Clustered multi-task learning via alternating structure optimization]. Advances in Neural Information Processing Systems.</ref>
* Multi-Task Learning with Graph Structures
==See also==
|