Content deleted Content added
Geysirhead (talk | contribs) →Test functions for single-objective optimization: added Shekel function |
Geysirhead (talk | contribs) |
||
Line 20:
{| class="sortable wikitable" style="text-align:center"
|-
! Name !! Plot
|-
| [[Rastrigin function]]
<math>\text{where: } A=10</math>
|-
| [[Ackley function]]
<math>-\exp\left[0.5\left(\cos 2\pi x + \cos 2\pi y \right)\right] + e + 20</math>
|-
| Sphere function
|-
| [[Rosenbrock function]]
\begin{cases}
n=2 & \rightarrow \quad f(1,1) = 0, \\
Line 52:
\end{cases}
</math>
|-
| [[Beale function]]
<math>+ \left(2.625 - x+ xy^{3}\right)^{2}</math>
|-
| [[Goldstein–Price function]]
<math>\left[30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right]</math>
|-
| [[Booth function]]
|-
| Bukin function N.6
|-
| [[Matyas function]]
|-
| Lévi function N.13
<math>+\left(y-1\right)^{2}\left(1+\sin^{2} 2\pi y\right)</math>
|-
| [[Himmelblau's function]]
\begin{cases}
f\left(3.0, 2.0\right) & = 0.0 \\
Line 104:
\end{cases}
</math>
|-
| Three-hump camel function
|
|-
| [[Easom function]]
|-
| Cross-in-tray function
|
|
\begin{cases}
f\left(1.34941, -1.34941\right) & = -2.06261 \\
Line 129:
\end{cases}
</math>
|
|-
| [[Eggholder function]]<ref name="Whitley Rana Dzubera Mathias 1996 pp. 245–276">{{cite journal | last1=Whitley | first1=Darrell | last2=Rana | first2=Soraya | last3=Dzubera | first3=John | last4=Mathias | first4=Keith E. | title=Evaluating evolutionary algorithms | journal=Artificial Intelligence | publisher=Elsevier BV | volume=85 | issue=1–2 | year=1996 | issn=0004-3702 | doi=10.1016/0004-3702(95)00124-7 | pages=264| doi-access=free }}</ref><ref name="vanaret2015hybridation">Vanaret C. (2015) [https://www.researchgate.net/publication/337947149_Hybridization_of_interval_methods_and_evolutionary_algorithms_for_solving_difficult_optimization_problems Hybridization of interval methods and evolutionary algorithms for solving difficult optimization problems.] PhD thesis. Ecole Nationale de l'Aviation Civile. Institut National Polytechnique de Toulouse, France.</ref>
|-
| [[Hölder table function]]
\begin{cases}
f\left(8.05502, 9.66459\right) & = -19.2085 \\
Line 148:
\end{cases}
</math>
|-
| [[McCormick function]]
|-
| Schaffer function N. 2
|-
| Schaffer function N. 4
\begin{cases}
f\left(0,1.25313\right) & = 0.292579 \\
Line 173:
\end{cases}
</math>
|-
| [[Styblinski–Tang function]]
|
|-
| [[Shekel function]]
f(\vec{x}) = \sum_{i = 1}^{m} \; \left( c_{i} + \sum\limits_{j = 1}^{n} (x_{j} - a_{ji})^2 \right)^{-1}
</math>
Line 191:
f(x_1,x_2,...,x_{n-1},x_n) = \sum_{i = 1}^{m} \; \left( c_{i} + \sum\limits_{j = 1}^{n} (x_{j} - a_{ij})^2 \right)^{-1}
</math>
|
|}
|