Spectrogram: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: date, url, title. URLs might have been anonymized. Add: newspaper, doi, pages, issue, volume. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine
OAbot (talk | contribs)
m Open access bot: doi updated in citation with #oabot.
Line 68:
* Individuals' spectrograms are collected by the [[Government of China|Chinese government]] as part of its [[Mass surveillance in China|mass surveillance]] programs.<ref>{{Cite news |date=November 23, 2023 |title=China's enormous surveillance state is still growing |newspaper=[[The Economist]] |url=https://www.economist.com/china/2023/11/23/chinas-enormous-surveillance-state-is-still-growing |url-access=subscription |access-date=2023-11-25 |issn=0013-0613}}</ref>
* For a vibration signal, a spectrogram’s color scale identifies the frequencies of a waveform’s amplitude peaks over time. Unlike a time or frequency graph, a spectrogram correlates peak values to time and frequency. Vibration test engineers use spectrograms to analyze the frequency content of a continuous waveform, locating strong signals and determining how the vibration behavior changes over time. <ref>{{Cite web|url=https://vibrationresearch.com/blog/what-is-a-spectrogram/|title=What is a Spectrogram? | access-date=2023-12-18}}</ref>
* Spectrograms can be used to analyze speech in two different applications: automatic detection of speech deficits in cochlear implant users and phoneme class recognition to extract phone-attribute features. <ref>{{cite journal|url=https://link.springer.com/article/10.1007/s10044-020-00921-5|title=Multi-channel spectrograms for speech processing applications using deep learning methods|first1=Arias-Vergara |last1= T. |first2= Klumpp|last2=P.|first3= Vasquez-Correa|last3=J. C.|first4=Nöth|last4=E. |first5= Orozco-Arroyave|last5=J. R. |first6=Schuster |last6=M. |date=2021|journal=Pattern Analysis and Applications|volume=24 |issue=2 |pages=423–431 |doi=10.1007/s10044-020-00921-5 |doi-access=free}}</ref>
* In order to obtain a speaker's pronunciation characteristics, some researchers proposed a method based on an idea from bionics, which uses spectrogram statistics to achieve a characteristic spectrogram to give a stable representation of the speakers' pronunciation from a linear superposition of short-time spectrograms.<ref>{{cite journal|url=https://link.springer.com/article/10.1007/s40747-020-00172-1|title=Speaker recognition based on characteristic spectrograms and an improved self-organizing feature map neural network|first1=Yanjie |last1= Jia |first2= Xi|last2=Chen|first3= Jieqiong|last3=Yu|first4=Lianming|last4=Wang|first5= Yuanzhe|last5= Xu |first6=Shaojin |last6=Liu |first7=Yonghui |last7=Wang |date=2021|journal=Complex & Intelligent Systems|volume=7 |issue=4 |pages=1749–1757 |doi=10.1007/s40747-020-00172-1 |doi-access=free}}</ref>
* Researchers explore a novel approach to ECG signal analysis by leveraging spectrogram techniques, possibly for enhanced visualization and understanding. The integration of MFCC for feature extraction suggests a cross-disciplinary application, borrowing methods from audio processing to extract relevant information from biomedical signals.<ref>{{cite journal|url=https://link.springer.com/article/10.1007/s12652-021-02926-2|title=Spectrogram analysis of ECG signal and classification efficiency using MFCC feature extraction technique|first1=Arpitha |last1= Yalamanchili |first2= G. L.|last2=Madhumathi |first3= N.|last3=Balaji |date=2022|journal=Journal of Ambient Intelligence and Humanized Computing|volume=13 |issue=2 |pages=757–767 |doi=10.1007/s12652-021-02926-2 }}</ref>
* Accurate interpretation of temperature indicating paint (TIP) is of great importance in aviation and other industrial applications. 2D spectrogram of TIP can be used in temperature interpretation. <ref>{{cite journal|url=https://www.sciencedirect.com/science/article/pii/S0263224123008813|title=Temperature interpretation method for temperature indicating paint based on spectrogram|first1=Junfeng |last1= Ge |first2= Li|last2=Wang |first3= Kang|last3=Gui |first4= Lin|last4=Ye |date=30 September 2023|journal=Measurement}}</ref>