Content deleted Content added
m Dating maintenance tags: {{Citation-needed}} |
|||
Line 293:
</ref>
In 2014, it was proved{{citation-needed|date=January 2024}} that a particular variant of the simplex method is [[NP-mighty]], i.e., it can be used to solve, with polynomial overhead, any problem in NP implicitly during the algorithm's execution. Moreover, deciding whether a given variable ever enters the basis during the algorithm's execution on a given input, and determining the number of iterations needed for solving a given problem, are both [[NP-hardness|NP-hard]] problems.<ref>{{Cite journal|last1=Disser|first1=Yann|last2=Skutella|first2=Martin|date=2018-11-01|title=The Simplex Algorithm Is NP-Mighty|journal=ACM Trans. Algorithms|volume=15|issue=1|pages=5:1–5:19|doi=10.1145/3280847|issn=1549-6325|arxiv=1311.5935|s2cid=54445546}}</ref> At about the same time it was shown that there exists an artificial pivot rule for which computing its output is [[PSPACE-complete]].<ref>{{Citation | last1 = Adler | first1 = Ilan | last2 = Christos | first2 = Papadimitriou | author2-link = Christos Papadimitriou | last3 = Rubinstein | first3 = Aviad | title = Integer Programming and Combinatorial Optimization | chapter = On Simplex Pivoting Rules and Complexity Theory | volume = 17 | pages = 13–24 | year = 2014 | arxiv = 1404.3320 | doi = 10.1007/978-3-319-07557-0_2| series = Lecture Notes in Computer Science | isbn = 978-3-319-07556-3 | s2cid = 891022 }}</ref> In 2015, this was strengthened to show that computing the output of Dantzig's pivot rule is [[PSPACE-complete]].<ref>{{Citation | last1 = Fearnly | first1 = John | last2 = Savani | first2 = Rahul | title = Proceedings of the forty-seventh annual ACM symposium on Theory of Computing | chapter = The Complexity of the Simplex Method | date = 2015 | pages = 201–208 | year = 2015 | arxiv = 1404.0605 | doi = 10.1145/2746539.2746558| isbn = 9781450335362 | s2cid = 2116116 }}</ref>
=== Efficiency in practice ===
|