Content deleted Content added
No edit summary |
m l |
||
Line 8:
* track moving sources
Array processing metrics are often assessed noisy environments. The model for noise may be either one of spatially incoherent noise, or one with interfering signals following the same propagation physics. [[Estimation theory]] is an important and basic part of signal processing field, which used to deal with estimation problem in which the values of several parameters of the system should be estimated based on measured/empirical data that has a random component. As the number of applications increases, estimating temporal and spatial parameters become more important. Array processing emerged in the last few decades as an active area and was centered on the ability of using and combining data from different sensors (antennas) in order to deal with specific estimation task (spatial and temporal processing). In addition to the information that can be extracted from the collected data the framework uses the advantage prior knowledge about the geometry of the [[sensor array]] to perform the estimation task.
Array processing is used in [[radar]], [[sonar]], seismic exploration, anti-jamming and [[wireless]] communications. One of the main advantages of using array processing along with an array of sensors is a smaller foot-print. The problems associated with array processing include the number of sources used, their [[direction of arrival]]s, and their signal [[waveforms]].<ref name="utexas1">Torlak, M. [http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/13_Array_Processing/lecture13/lecture13.pdf Spatial Array Processing]. Signal and Image Processing Seminar. University of Texas at Austin.</ref><ref name="ref1">{{cite book|last=J Li|first=[[Peter Stoica]] (Eds)|title=MIMO Radar Signal Processing|year=2009|publisher=J Wiley&Sons|___location=USA}}</ref><ref name="ref2">{{cite book|last=[[Peter Stoica]]|first=R Moses|title=Spectral Analysis of Signals|year=2005|publisher=Prentice Hall|___location=NJ|url=http://user.it.uu.se/%7Eps/SAS-new.pdf}}</ref><ref name="ref3">{{cite book|last=J Li|first=[[Peter Stoica]] (Eds)|title=Robust Adaptive Beamforming|year=2006|publisher=J Wiley&Sons|___location=USA}}</ref>
[[File:Aray Prcessing Model.png|thumb|Sensors array]]
|