Content deleted Content added
Adding short description: "Mathematical operation" |
m →Definitions: move Eq.1 label from right to left |
||
Line 13:
Then''':'''
{{Equation box 1
\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>|{{EquationRef|Eq.1}}}}▼
|indent=:|cellpadding=0|border=0|background colour=white
|equation={{NumBlk||
<math>
▲\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>
|{{EquationRef|Eq.1}} }} }}
{{math proof|title=Derivation of Eq.1|proof=
:<math
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
|