Content deleted Content added
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
Open access status updates in citations with OAbot #oabot |
||
Line 175:
All of the above models can be extended to allow for more distant dependencies among hidden states, e.g. allowing for a given state to be dependent on the previous two or three states rather than a single previous state; i.e. the transition probabilities are extended to encompass sets of three or four adjacent states (or in general <math>K</math> adjacent states). The disadvantage of such models is that dynamic-programming algorithms for training them have an <math>O(N^K \, T)</math> running time, for <math>K</math> adjacent states and <math>T</math> total observations (i.e. a length-<math>T</math> Markov chain).
Another recent extension is the ''triplet Markov model'',<ref name="TMM">{{cite journal |doi=10.1016/S1631-073X(02)02462-7 |volume=335 |issue=3 |title=Chaı̂nes de Markov Triplet |year=2002 |journal=Comptes Rendus Mathématique |pages=275–278 |last1=Pieczynski |first1=Wojciech|url=
Finally, a different rationale towards addressing the problem of modeling nonstationary data by means of hidden Markov models was suggested in 2012.<ref name="Reservoir-HMM">{{cite journal |last1=Chatzis |first1=Sotirios P. |last2=Demiris |first2=Yiannis |year=2012 |title=A Reservoir-Driven Non-Stationary Hidden Markov Model |journal=Pattern Recognition |volume=45 |issue=11 |pages=3985–3996 |doi=10.1016/j.patcog.2012.04.018|bibcode=2012PatRe..45.3985C |hdl=10044/1/12611 |hdl-access=free }}</ref> It consists in employing a small recurrent neural network (RNN), specifically a reservoir network,<ref>M. Lukosevicius, H. Jaeger (2009) Reservoir computing approaches to recurrent neural network training, Computer Science Review '''3''': 127–149.</ref> to capture the evolution of the temporal dynamics in the observed data. This information, encoded in the form of a high-dimensional vector, is used as a conditioning variable of the HMM state transition probabilities. Under such a setup, we eventually obtain a nonstationary HMM the transition probabilities of which evolve over time in a manner that is inferred from the data itself, as opposed to some unrealistic ad-hoc model of temporal evolution.
|