Content deleted Content added
XOR'easter (talk | contribs) unreliable journal |
XOR'easter (talk | contribs) nominating for deletion in a bundle with Wikipedia:Articles for deletion/Coshc function |
||
Line 1:
<!-- Please do not remove or change this AfD message until the discussion has been closed. -->
{{Article for deletion/dated|page=Coshc function|timestamp=20240112070628|year=2024|month=January|day=12|substed=yes|help=off}}
<!-- Once discussion is closed, please place on talk page: {{Old AfD multi|page=Coshc function|date=12 January 2024|result='''keep'''}} -->
<!-- End of AfD message, feel free to edit beyond this point -->
In mathematics, the '''sinhc function''' appears frequently in papers about [[optical scattering]],<ref>{{Cite journal |last1=den Outer |first1=P. N. |last2=Lagendijk |first2=Ad |last3=Nieuwenhuizen |first3=Th. M. |date=1993-06-01 |title=Location of objects in multiple-scattering media |url=https://opg.optica.org/abstract.cfm?URI=josaa-10-6-1209 |journal=Journal of the Optical Society of America A |language=en |volume=10 |issue=6 |pages=1209 |doi=10.1364/JOSAA.10.001209 |bibcode=1993JOSAA..10.1209D |issn=1084-7529}}</ref> and [[hyperbolic geometry]].<ref>Nilgün Sönmez, [http://www.m-hikari.com/imf-password2009/37-40-2009/sonmezIMF37-40-2009.pdf A Trigonometric Proof of the Euler Theorem in Hyperbolic Geometry], International Mathematical Forum, 4, 2009, no. 38, 1877–1881</ref>{{Better source needed|reason=Predatory open-access journal|date=November 2022}} For <math>z \neq 0</math>, it is defined as<ref>{{Cite journal |last1=ten Thije Boonkkamp |first1=J. H. M. |last2=van Dijk |first2=J. |last3=Liu |first3=L. |last4=Peerenboom |first4=K. S. C. |date=2012 |title=Extension of the Complete Flux Scheme to Systems of Conservation Laws |journal=Journal of Scientific Computing |language=en |volume=53 |issue=3 |pages=552–568 |doi=10.1007/s10915-012-9588-5 |s2cid=8455136 |issn=0885-7474|doi-access=free }}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=Sinhc Function |url=https://mathworld.wolfram.com/SinhcFunction.html |access-date=2022-11-17 |website=mathworld.wolfram.com |language=en}}</ref>
<math display="block">\operatorname{sinhc}(z)=\frac {\sinh(z) }{z}</math>
|