Probabilistic programming: Difference between revisions

Content deleted Content added
ce
Citation bot (talk | contribs)
Altered template type. Add: class, eprint. Removed proxy/dead URL that duplicated identifier. Removed access-date with no URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
Line 22:
More recently, the probabilistic programming system [[Turing (probabilistic programming)|Turing.jl]] has been applied in various pharmaceutical<ref>{{Cite journal|last1=Semenova|first1=Elizaveta|last2=Williams|first2=Dominic P.|last3=Afzal|first3=Avid M.|last4=Lazic|first4=Stanley E.|date=2020-11-01|title=A Bayesian neural network for toxicity prediction|url=https://www.sciencedirect.com/science/article/pii/S2468111320300438|journal=Computational Toxicology|language=en|volume=16|pages=100133|doi=10.1016/j.comtox.2020.100133|s2cid=225362130|issn=2468-1113}}</ref> and economics applications.<ref name="pharma-turing">{{Citation|title= Predicting Drug-Induced Liver Injury with Bayesian Machine Learning |year= 2020 |doi= 10.1021/acs.chemrestox.9b00264 |url= https://pubs.acs.org/doi/10.1021/acs.chemrestox.9b00264|last1= Williams |first1= Dominic P. |last2= Lazic |first2= Stanley E. |last3= Foster |first3= Alison J. |last4= Semenova |first4= Elizaveta |last5= Morgan |first5= Paul |journal= Chemical Research in Toxicology |volume= 33 |issue= 1 |pages= 239–248 |pmid= 31535850 |s2cid= 202689667 }}</ref>
 
Probabilistic programming in Julia has also been combined with [[differentiable programming]] by combining the Julia package Zygote.jl with Turing.jl. <ref name="diffprog-zygote">{{cite arxivarXiv|date=2019|title=∂P: A Differentiable Programming System to Bridge Machine Learning and Scientific Computing|arxiveprint=1907.07587|last1=Innes|first1=Mike|last2=Edelman|first2=Alan|last3=Fischer|first3=Keno|last4=Rackauckas|first4=Chris|last5=Saba|first5=Elliot|author6=Viral B Shah|last7=Tebbutt|first7=Will|class=cs.PL }}</ref>
 
Probabilistic programming languages are also commonly used in [[Bayesian cognitive science]] to develop and evaluate models of cognition. <ref>{{cite web |last1=Goodman |first1=Noah D |last2=Tenenbaum |first2=Joshua B |last3=Buchsbaum |first3=Daphna |last4=Hartshorne |first4=Joshua |last5=Hawkins |first5=Robert |last6=O'Donnell |first6=Timothy J |last7=Tessler |first7=Michael Henry |title=Probabilistic Models of Cognition |url=http://probmods.org/ |website=Probabilistic Models of Cognition - 2nd Edition |access-date=27 May 2023}}</ref>
Line 190:
|
|-
|MultiVerse<ref>{{Citation |last1=Perov |first1=Yura |title=MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming |date=2020-01-28 |url=http://arxiv.org/abs/1910.08091 |access-date=2024-01-06 |arxiv=1910.08091 |last2=Graham |first2=Logan |last3=Gourgoulias |first3=Kostis |last4=Richens |first4=Jonathan G. |last5=Lee |first5=Ciarán M. |last6=Baker |first6=Adam |last7=Johri |first7=Saurabh}}</ref>
|Python
|Python