Content deleted Content added
Citation bot (talk | contribs) Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine |
m it's > its - it's does not mean belonging to it, it is only a contraction of it is, or it has |
||
Line 27:
|| [[File:Boltzmannexamplev1.png |thumb|Network is separated into 2 layers (hidden vs. visible), but still using symmetric 2-way weights. Following Boltzmann's thermodynamics, individual probabilities give rise to macroscopic energies.]]
|| [[File:Restricted Boltzmann machine.svg|thumb|Restricted Boltzmann Machine. This is a Boltzmann machine where lateral connections within a layer are prohibited to make analysis tractable.]]
|| [[File:Stacked-boltzmann.png|thumb| This network has multiple RBM's to encode a hierarchy of hidden features. After a single RBM is trained, another blue hidden layer (see left RBM) is added, and the top 2 layers are trained as a red & blue RBM. Thus the middle layers of an RBM acts as hidden or visible, depending on the training phase it
|}
Line 35:
|-
|| [[File:Helmholtz Machine.png |thumb|Instead of the bidirectional symmetric connection of the stacked Boltzmann machines, we have separate one-way connections to form a loop. It does both generation and discrimination.]]
|| [[File:Autoencoder_schema.png |thumb|A feed forward network that aims to find a good middle layer representation of its input world. This network is deterministic, so it
|| [[File:VAE blocks.png |thumb|Applies Variational Inference to the Autoencoder. The middle layer is a set of means & variances for Gaussian distributions. The stochastic nature allows for more robust imagination than the deterministic autoencoder. ]]
|}
Line 86:
{{term |1=[[Helmholtz machine]]}}
{{defn |1=These are early inspirations for the Variational Auto Encoders.
{{term |1=[[Variational autoencoder]]}}
|