Markov kernel: Difference between revisions

Content deleted Content added
No edit summary
Formal definition: Minor notational disambiguation in the two axioms
Line 4:
 
Let <math>(X,\mathcal A)</math> and <math>(Y,\mathcal B)</math> be [[measurable space]]s. A ''Markov kernel'' with source <math>(X,\mathcal A)</math> and target <math>(Y,\mathcal B)</math> is a map <math>\kappa : \mathcal B \times X \to [0,1]</math> with the following properties:
# For every (fixed) <math>BB_0 \in \mathcal B</math>, the map <math> x \mapsto \kappa(BB_0, x)</math> is <math>\mathcal A</math>-[[measurable function|measurable]]
# For every (fixed) <math> xx_0 \in X</math>, the map <math> B \mapsto \kappa(B, xx_0)</math> is a [[probability measure]] on <math>(Y, \mathcal B)</math>
In other words it associates to each point <math>x \in X</math> a [[probability measure]] <math>\kappa(dy|x): B \mapsto \kappa(B, x)</math> on <math>(Y,\mathcal B)</math> such that, for every measurable set <math>B\in\mathcal B</math>, the map <math>x\mapsto \kappa(B, x)</math> is measurable with respect to the <math>\sigma</math>-algebra <math>\mathcal A</math>.<ref>{{cite book |last1=Klenke |first1=Achim |title=Probability Theory: A Comprehensive Course|series=Universitext |year=2014 |publisher=Springer|page=180|edition=2|doi=10.1007/978-1-4471-5361-0|isbn=978-1-4471-5360-3 }}</ref>