Synchronization: Difference between revisions

Content deleted Content added
m I added basic citations
m clean up spacing around commas and other punctuation fixes, replaced: ,W → , W
Line 40:
Synchronization of multiple interacting [[dynamical system]]s can occur when the systems are [[Self-oscillation|autonomous oscillators]]. Poincaré phase oscillators are model systems that can interact and partially synchronize within random or regular networks.<ref name="Nolte">{{cite book | first = David | last = Nolte | title = Introduction to Modern Dynamics: Chaos, Networks, Space and Time | publisher = [[Oxford University Press]] | year = 2015 }}</ref> In the case of global synchronization of phase oscillators, an abrupt transition from unsynchronized to full synchronization takes place when the coupling strength exceeds a critical threshold. This is known as the [[Kuramoto model]] phase transition.<ref name=":1">{{Cite web|url=https://www.youtube.com/watch?v=t-_VPRCtiUg|title = The Surprising Secret of Synchronization|website = [[YouTube]]}}</ref> Synchronization is an emergent property that occurs in a broad range of dynamical systems, including neural signaling, the beating of the heart and the synchronization of fire-fly light waves.
 
== Applications ==
 
=== Neuroscience ===
 
In cognitive neuroscience, (stimulus-dependent) (phase-)synchronous oscillations of neuron populations serve to solve the general "[[binding problem]]". According to the so-called "Binding-By-Synchrony (BBS) Hypothesis"<ref>Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations. Neuron, 24, 49-65.</ref><ref>Singer, W. (1999a). Binding by neural synchrony. In R. A. Wilson & F. C. Keil (eds.): The MIT encyclopedia of the cognitive sciences (pp. 81-84). Cambridge, MA, London: The MIT Press.</ref><ref>Singer, W. (2009a). Consciousness and neuronal synchronization. In S. Laureys & G. Tononi: The neurology of consciousness: Cognitive neuroscience and neuropathology (pp. 43-52). Amsterdam: Elsevier.</ref><ref>Singer, W. (2009b). Neural synchrony and feature binding. In L.R. Squire (Ed.) Encyclopedia of Neuroscience. Vol. 6 (pp. 253-259). Oxford: Academic Press.</ref><ref>Singer, W. (2013a). The neuronal correlate of consciousness: Unity in time rather than space? Neurosciences and the Human Person: New Perspectives on Human Activities Pontifical Academy of Sciences. Scripta Varia. Vol. 121. Vatican City. 2013. From: www.casinapioiv.va/content/dam/accademia/pdf/sv121/sv121-singer.pdf</ref><ref>Singer, W. (2013b). Cortical dynamics revisited. Trends in Cognitive Sciences 17, 616-626.</ref><ref>Singer, W. (2018). Neuronal oscillations: unavoidable and useful? European Journal of Neuroscience 48, 2389-2399.</ref> a precise temporal correlation between the impulses of neurons ("cross-correlation analysis"<ref>Engel, A. K., König, P., Gray, C. M. & Singer, W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: Intercolumnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2, 588-606.</ref>) and thus a stimulus-dependent temporal synchronization of the coherent activity of subpopulations of neurons emerges. Moreover, this synchronization mechanism circumvents the "superposition problem"<ref>Malsburg, C. von der (1999). The what and why of binding: The modeler's perspective. Neuron, 24, 95-104.</ref> by more effectively identifying the signature of synchronous neuronal signals as belonging together for subsequent (sub-)cortical information processing areas.
 
=== Cognitive science ===
 
In cognitive science, integrative (phase) synchronization mechanisms in cognitive neuroarchitectures of modern [[connectionism]] that include coupled oscillators (e.g."Oscillatory Networks"<ref>Werning, M. (2012). Non-symbolic compositional representation and its neuronal foundation: Towards an emulative semantics. In M. Werning, W. Hinzen & E. Machery (eds.), The Oxford handbook of compositionality (pp. 633-654). Oxford University Press. Oxford.</ref>) are used to solve the [[binding problem]] of cognitive neuroscience in perceptual cognition ("feature binding") and in language cognition ("variable binding").<ref>Maurer, H. (2021). Cognitive science: Integrative synchronization mechanisms in cognitive neuroarchitectures of the modern connectionism. CRC Press, Boca Raton/FL, ISBN 978-1-351-04352-6. https://doi.org/10.1201/9781351043526</ref><ref>Maurer, H. (2016). „Integrative synchronization mechanisms in connectionist cognitive Neuroarchitectures“. Computational Cognitive Science. 2: 3. https://doi.org/10.1186/s40469-016-0010-8</ref><ref>Marcus, G.F. (2001). The algebraic mind. Integrating connectionism and cognitive science. Bradford Book, The MIT Press, Cambridge, ISBN 0-262-13379-2. https://doi.org/10.7551/mitpress/1187.001.0001</ref><ref>Bechtel, W. & Abrahamsen, A.A. (2002). Connectionism and the Mind: Parallel Processing, Dynamics, and Evolution in Networks. 2nd Edition. Blackwell Publishers, Oxford.</ref>
 
== Human movement ==