Content deleted Content added
Tag: Reverted |
No edit summary Tag: Reverted |
||
Line 132:
==Software package==
A Matlab package called Multi-Task Learning via StructurAl Regularization (MALSAR) <ref>Zhou, J., Chen, J. and Ye, J. MALSAR: Multi-tAsk Learning via StructurAl Regularization. Arizona State University, 2012. http://www.public.asu.edu/~jye02/Software/MALSAR. [http://www.public.asu.edu/~jye02/Software/MALSAR/Manual.pdf On-line manual]</ref> implements the following multi-task learning algorithms: Mean-Regularized Multi-Task Learning,<ref>Evgeniou, T., & Pontil, M. (2004). [https://web.archive.org/web/20171212193041/https://pdfs.semanticscholar.org/1ea1/91c70559d21be93a4d128f95943e80e1b4ff.pdf Regularized multi–task learning]. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 109–117).</ref><ref>{{cite journal | last1 = Evgeniou | first1 = T. | last2 = Micchelli | first2 = C. | last3 = Pontil | first3 = M. | year = 2005 | title = Learning multiple tasks with kernel methods | url = http://jmlr.org/papers/volume6/evgeniou05a/evgeniou05a.pdf | journal = Journal of Machine Learning Research | volume = 6 | page = 615 }}</ref> Multi-Task Learning with Joint Feature Selection,<ref>{{cite journal | last1 = Argyriou | first1 = A. | last2 = Evgeniou | first2 = T. | last3 = Pontil | first3 = M. | year = 2008a | title = Convex multi-task feature learning | journal = Machine Learning | volume = 73 | issue = 3| pages = 243–272 | doi=10.1007/s10994-007-5040-8| doi-access = free }}</ref> Robust Multi-Task Feature Learning,<ref>Chen, J., Zhou, J., & Ye, J. (2011). [https://www.academia.edu/download/44101186/Integrating_low-rank_and_group-sparse_st20160325-15067-1mftmbg.pdf Integrating low-rank and group-sparse structures for robust multi-task learning]{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.</ref> Trace-Norm Regularized Multi-Task Learning,<ref>Ji, S., & Ye, J. (2009). [http://www.machinelearning.org/archive/icml2009/papers/151.pdf An accelerated gradient method for trace norm minimization]. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 457–464).</ref> Alternating Structural Optimization,<ref>{{cite journal | last1 = Ando | first1 = R. | last2 = Zhang | first2 = T. | year = 2005 | title = A framework for learning predictive structures from multiple tasks and unlabeled data | url = http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf | journal = The Journal of Machine Learning Research | volume = 6 | pages = 1817–1853 }}</ref><ref>Chen, J., Tang, L., Liu, J., & Ye, J. (2009). [http://leitang.net/papers/ICML09_CASO.pdf A convex formulation for learning shared structures from multiple tasks]. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 137–144).</ref> Incoherent Low-Rank and Sparse Learning,<ref>Chen, J., Liu, J., & Ye, J. (2010). [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783291/ Learning incoherent sparse and low-rank patterns from multiple tasks]. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1179–1188).</ref> Robust Low-Rank Multi-Task Learning, Clustered Multi-Task Learning,<ref>Jacob, L., Bach, F., & Vert, J. (2008). [https://hal-ensmp.archives-ouvertes.fr/docs/00/32/05/73/PDF/cmultitask.pdf Clustered multi-task learning: A convex formulation]. Advances in Neural Information Processing Systems, 2008</ref><ref>Zhou, J., Chen, J., & Ye, J. (2011). [http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization.pdf Clustered multi-task learning via alternating structure optimization]. Advances in Neural Information Processing Systems.</ref> Multi-Task Learning with Graph Structures.
== Literature ==▼
* Yu, Tianhe, et al. "Gradient surgery for multi-task learning." Advances in Neural Information Processing Systems 33 (2020): 5824-5836. https://arxiv.org/pdf/2001.06782.pdf▼
==See also==
* [[Artificial intelligence]]
* [[Artificial neural network]]
Line 148 ⟶ 144:
* [[Robot learning]]
* [[Transfer learning]]
▲== Literature ==
▲* Yu, Tianhe, et al. "Gradient surgery for multi-task learning." Advances in Neural Information Processing Systems 33 (2020): 5824-5836. https://arxiv.org/pdf/2001.06782.pdf
==References==
|