Content deleted Content added
No edit summary Tags: Visual edit Mobile edit Mobile web edit |
more specific wikilink |
||
Line 6:
Symbolic AI was the dominant [[paradigm]] of AI research from the mid-1950s until the mid-1990s.{{sfn|Kolata|1982}} Researchers in the 1960s and the 1970s were convinced that symbolic approaches would eventually succeed in creating a machine with [[artificial general intelligence]] and considered this the ultimate goal of their field.{{sfn|Russell|Norvig|2021|p=24}} An early boom, with early successes such as the [[Logic Theorist]] and [[Arthur Samuel (computer scientist)|Samuel]]'s [[Arthur Samuel (computer scientist)|Checkers Playing Program]], led to unrealistic expectations and promises and was followed by the First [[AI winter|AI Winter]] as funding dried up.{{sfn|Kautz|2022|pp=107-109}}{{sfn|Russell |Norvig|2021|p=19}} A second boom (1969–1986) occurred with the rise of expert systems, their promise of capturing corporate expertise, and an enthusiastic corporate embrace.{{sfn|Russell |Norvig|2021|pp=22-23}}{{sfn|Kautz|2022|pp=109-110}} That boom, and some early successes, e.g., with [[XCON]] at [[Digital Equipment Corporation|DEC]], was followed again by later disappointment.{{sfn|Kautz|2022|pp=109-110}} Problems with difficulties in knowledge acquisition, maintaining large knowledge bases, and brittleness in handling out-of-___domain problems arose. Another, second, AI Winter (1988–2011) followed.{{sfn|Kautz|2022|p=110}} Subsequently, AI researchers focused on addressing underlying problems in handling uncertainty and in knowledge acquisition.{{sfn|Kautz|2022|pp=110-111}} Uncertainty was addressed with formal methods such as [[hidden Markov model]]s, [[Bayesian reasoning]], and [[statistical relational learning]].{{sfn|Russell |Norvig|2021|p=25}}{{sfn|Kautz|2022|p=111}} Symbolic machine learning addressed the knowledge acquisition problem with contributions including [[Version space learning|Version Space]], [[Leslie Valiant|Valiant]]'s [[Probably approximately correct learning|PAC learning]], [[Ross Quinlan|Quinlan]]'s [[ID3 algorithm|ID3]] [[decision-tree]] learning, [[Case-based reasoning|case-based learning]], and [[inductive logic programming]] to learn relations.{{sfn|Kautz|2020|pp=110-111}}
[[Artificial neural netwrk|Neural
{{cite web |last1=Rossi |first1=Francesca |title=Thinking Fast and Slow in AI |url=https://aaai-2022.virtualchair.net/plenary_13.html |publisher=AAAI |access-date=5 July 2022}}</ref><ref name="Selman">
{{cite web |last1=Selman |first1=Bart |title=AAAI Presidential Address: The State of AI |url=https://aaai-2022.virtualchair.net/plenary_2.html |publisher=AAAI |access-date=5 July 2022}}</ref> and addressing areas that both approaches have difficulty with, such as [[Commonsense reasoning|common-sense reasoning]].{{sfn|Marcus |Davis|2019}}
|