Discussione:Derivata: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
|||
Riga 105:
"In matematica, la funzione derivata f ′ ( x ) {\displaystyle f'(x)} f'(x) di una funzione f ( x ) {\displaystyle f(x)} f(x) rappresenta il tasso di cambiamento di una funzione rispetto a una variabile, vale a dire la misura di quanto la crescita di una funzione cambi al variare del suo argomento.". La seconda parte della frase, quella dopo la virgola, mi sembra concettualmente un errore. La crescita di una f rapportata al suo argomento ha a che fare con la derivata (derivata prima), la variazione della crescita di f rapportata al suo argomento ha a che fare con la derivata seconda.--[[Speciale:Contributi/37.183.79.65|37.183.79.65]] ([[User talk:37.183.79.65|msg]]) 06:27, 28 apr 2021 (CEST)Patrizio
:Concordo. Corretto e aggiunto quello spero sia un chiarimento più informale che mantiene il termine "crescita" a cui molti sono più abituati studiando questo argomento.--[[Utente:Mat4free|Mat4free]] ([[Discussioni utente:Mat4free|msg]]) 10:30, 28 apr 2021 (CEST)
::Sì, secondo me va bene (ma non sono un matematico). Forse è il caso di dire (magari un po' meglio di così) che la derivata è la crescita di una variabile rapportata alla crescita dell'altra, cioè che è sempre un rapporto, rapporto che si fa poi tendere al limite, ma anche al limite rimane tale. Questo, in ambito di calcolo puramente numerico probabilmente non fa gran differenza ma, in ambito fisico e scientifico in genere, rende conto del fatto che la derivata è una grandezza con dimensioni e unità di misura in genere differenti dalla sua primitiva (velocità e accelerazione, entalpia e calore specifico, energia e potenza, carica elettrica e corrente, ad es.).--[[Speciale:Contributi/37.183.79.65|37.183.79.65]] ([[User talk:37.183.79.65|msg]]) 14:00, 29 apr 2021 (CEST)Patrizio
| |||