Vienna Ab initio Simulation Package: Difference between revisions

Content deleted Content added
No edit summary
Heusler (talk | contribs)
add info about VAMP
Line 23:
The '''Vienna Ab initio Simulation Package''', better known as '''VASP''', is a package written primarily in Fortran for performing [[Ab initio quantum chemistry methods|ab initio]] [[quantum mechanical]] calculations using either Vanderbilt [[pseudopotential]]s, or the [[projector augmented wave method]], and a [[plane wave]] [[basis set (chemistry)|basis set]].<ref>{{cite web|url=http://cms.mpi.univie.ac.at/vasp/ |title=VASP Group, Theoretical Physics Departments, Vienna |author=Georg, Kresse |access-date=February 21, 2011 |date=March 31, 2010}}</ref> The basic methodology is [[density functional theory]] (DFT), but the code also allows use of post-DFT corrections such as [[hybrid functional]]s mixing DFT and [[Hartree–Fock]] exchange (e.g. HSE,<ref>{{Cite journal|last1=Heyd|first1=Jochen|last2=Scuseria|first2=Gustavo E.|last3=Ernzerhof|first3=Matthias|date=2003-05-08|title=Hybrid functionals based on a screened Coulomb potential|url=http://aip.scitation.org/doi/10.1063/1.1564060|journal=The Journal of Chemical Physics|language=en|volume=118|issue=18|pages=8207–8215|doi=10.1063/1.1564060|bibcode=2003JChPh.118.8207H |issn=0021-9606}}</ref> PBE0<ref>{{Cite journal|last1=Perdew|first1=John P.|last2=Ernzerhof|first2=Matthias|last3=Burke|first3=Kieron|date=1996-12-08|title=Rationale for mixing exact exchange with density functional approximations|url=http://aip.scitation.org/doi/10.1063/1.472933|journal=The Journal of Chemical Physics|language=en|volume=105|issue=22|pages=9982–9985|doi=10.1063/1.472933|bibcode=1996JChPh.105.9982P |issn=0021-9606}}</ref> or B3LYP<ref>{{Cite journal|last1=Kim|first1=K.|last2=Jordan|first2=K. D.|date=October 1994|title=Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer|url=https://pubs.acs.org/doi/abs/10.1021/j100091a024|journal=The Journal of Physical Chemistry|language=en|volume=98|issue=40|pages=10089–10094|doi=10.1021/j100091a024|issn=0022-3654}}</ref>), many-body perturbation theory (the [[GW approximation|GW method]]<ref>{{Cite journal |last1=Klimeš |first1=Jiří |last2=Kaltak |first2=Merzuk |last3=Kresse |first3=Georg |date=2014-08-14 |title=Predictive G W calculations using plane waves and pseudopotentials |url=https://link.aps.org/doi/10.1103/PhysRevB.90.075125 |journal=Physical Review B |language=en |volume=90 |issue=7 |pages=075125 |doi=10.1103/PhysRevB.90.075125 |arxiv=1404.3101 |bibcode=2014PhRvB..90g5125K |s2cid=119110222 |issn=1098-0121}}</ref>) and dynamical electronic correlations within the [[random phase approximation|random phase approximation (RPA)]]<ref>{{Cite journal |last1=Kaltak |first1=Merzuk |last2=Klimeš |first2=Jiří |last3=Kresse |first3=Georg |date=2014-08-25 |title=Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si |url=https://link.aps.org/doi/10.1103/PhysRevB.90.054115 |journal=Physical Review B |language=en |volume=90 |issue=5 |pages=054115 |doi=10.1103/PhysRevB.90.054115 |bibcode=2014PhRvB..90e4115K |issn=1098-0121}}</ref> and [[Møller–Plesset perturbation theory|MP2]].<ref>{{Cite journal |last1=Marsman |first1=M. |last2=Grüneis |first2=A. |last3=Paier |first3=J. |last4=Kresse |first4=G. |date=2009 |title=Second-order Mo̸ller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set |url=http://scitation.aip.org/content/aip/journal/jcp/130/18/10.1063/1.3126249 |journal=The Journal of Chemical Physics |language=en |volume=130 |issue=18 |pages=184103 |doi=10.1063/1.3126249|pmid=19449904 |bibcode=2009JChPh.130r4103M }}</ref><ref>{{Cite journal |last1=Schäfer |first1=Tobias |last2=Ramberger |first2=Benjamin |last3=Kresse |first3=Georg |date=2017-03-14 |title=Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis |url=http://aip.scitation.org/doi/10.1063/1.4976937 |journal=The Journal of Chemical Physics |language=en |volume=146 |issue=10 |pages=104101 |doi=10.1063/1.4976937 |pmid=28298118 |arxiv=1611.06797 |bibcode=2017JChPh.146j4101S |s2cid=26397794 |issn=0021-9606}}</ref>
 
Originally, VASP was based on code written by Mike Payne (then at [[Massachusetts Institute of Technology|MIT]]), which was also the basis of [[CASTEP]].<ref>{{cite web|url=http://cms.mpi.univie.ac.at/vasp/vasp/History_VASP.html |title=History of VASP|author=Martijn Marsman |access-date=April 30, 2012 |date=October 14, 2011}}</ref> It was then brought to the [[University of Vienna]], Austria, in July 1989 by [[Jürgen Hafner]]. The main program was written by [[Jürgen Furthmüller]], who joined the group at the [[Institut für Materialphysik]] in January 1993, and Georg Kresse. An early version of VASP was called VAMP.<ref>{{cite journal |last1=Kresse |first1=Georg |last2=Furthmüller |first2=Jürgen |title=Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set |journal=Computational Materials Science |date=July 1996 |volume=6 |issue=1 |pages=15-50 |doi=10.1016/0927-0256(96)00008-0 |url=https://doi.org/10.1016/0927-0256(96)00008-0}}</ref> VASP is currently being developed by [[Georg Kresse]]; recent additions include the extension of methods frequently used in molecular [[quantum chemistry]] to periodic systems.
VASP is currently used by more than 1400 research groups in academia and industry worldwide on the basis of software licence agreements with the University of Vienna.