Content deleted Content added
Convex closure is sometimes used to refer to the convex hull, but it can also refer to the closed convex hull. See talk page for details. |
tweaked Tags: Mobile edit Mobile app edit iOS app edit |
||
Line 3:
{{good article}}
[[File:Extreme points.svg|thumb|right|The convex hull of the red set is the blue and red [[convex set]].]]
In [[geometry]], the '''convex hull'''
Convex hulls of [[open set]]s are open, and convex hulls of [[compact set]]s are compact. Every compact convex set is the convex hull of its [[extreme point]]s. The convex hull operator is an example of a [[closure operator]], and every [[antimatroid]] can be represented by applying this closure operator to finite sets of points.
|