Content deleted Content added
No edit summary |
|||
Line 56:
One way to construct such a ''z'' is to randomly sample from the [[Fourier transformation]] of the kernel<ref>{{Cite journal |last1=Rahimi |first1=Ali |last2=Recht |first2=Benjamin |date=2007 |title=Random Features for Large-Scale Kernel Machines |url=https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html |journal=Advances in Neural Information Processing Systems |publisher=Curran Associates, Inc. |volume=20}}</ref><math display="block">\varphi(x) = \frac{1}{\sqrt D}[\cos\langle w_1, x\rangle, \sin\langle w_1, x\rangle, \
'''Theorem:''' <math>\operatorname E[\langle \varphi(x), \varphi(y)\rangle] = e^{\frac{\|x-y\|^2}{2\sigma^2}}. </math>
'''Proof:''' It suffices to prove the case of <math>D=1</math>. Use the trigonometric identity <math>\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)</math>, the spherical symmetry of gaussian distribution, then evaluate the integral <math>\int_{-\infty}^
'''Theorem:''' <math>\operatorname{Var}[\langle \varphi(x), \varphi(y)\rangle] = O(D^{-1})</math>. (Appendix A.2<ref>{{Cite arXiv |last1=Peng |first1=Hao |last2=Pappas |first2=Nikolaos |last3=Yogatama |first3=Dani |last4=Schwartz |first4=Roy |last5=Smith |first5=Noah A. |last6=Kong |first6=Lingpeng |date=2021-03-19 |title=Random Feature Attention |class=cs.CL |eprint=2103.02143 }}</ref>).
|