Radial basis function kernel: Difference between revisions

Content deleted Content added
Line 58:
One way to construct such a ''z'' is to randomly sample from the [[Fourier transformation]] of the kernel<ref>{{Cite journal |last1=Rahimi |first1=Ali |last2=Recht |first2=Benjamin |date=2007 |title=Random Features for Large-Scale Kernel Machines |url=https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html |journal=Advances in Neural Information Processing Systems |publisher=Curran Associates, Inc. |volume=20}}</ref><math display="block">\varphi(x) = \frac{1}{\sqrt D}[\cos\langle w_1, x\rangle, \sin\langle w_1, x\rangle, \ldots, \cos\langle w_D, x\rangle, \sin\langle w_D, x\rangle]^T</math>where <math>w_1, ..., w_D</math> are independent samples from the normal distribution <math>N(0, \sigma^{-2} I)</math>.
 
'''Theorem:''' <math>\operatorname E[\langle \varphi(x), \varphi(y)\rangle] = e^{\frac{\|x-y\|^2}{/(2\sigma^2})}. </math>
 
'''Proof:''' It suffices to prove the case of <math>D=1</math>. Use the trigonometric identity <math>\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)</math>, the spherical symmetry of gaussian distribution, then evaluate the integral