Content deleted Content added
tag as unref |
ref |
||
Line 1:
In mathematics, the '''continuum function''' is <math>\kappa\mapsto 2^\kappa</math>, i.e. raising 2 to the power of κ using [[cardinal exponentiation]].<ref>{{Cite journal |last=Cody |first=Brent |last2=Magidor |first2=Menachem |date=February 2014 |title=On supercompactness and the continuum function |url=https://doi.org/10.1016/j.apal.2013.09.001 |journal=[[Annals of Pure and Applied Logic]] |volume=165 |issue=2 |pages=620–630 |doi=10.1016/j.apal.2013.09.001 |issn=0168-0072}}</ref> Given a [[cardinal number]], it is the cardinality of the [[power set]] of a set of the given cardinality.▼
▲In mathematics, the '''continuum function''' is <math>\kappa\mapsto 2^\kappa</math>, i.e. raising 2 to the power of κ using [[cardinal exponentiation]]. Given a [[cardinal number]], it is the cardinality of the [[power set]] of a set of the given cardinality.
==See also==
Line 11 ⟶ 10:
[[Category:Cardinal numbers]]
== References ==
{{Reflist}}{{settheory-stub}}
|