Content deleted Content added
→Link function: punctuation inside <math> |
No edit summary Tag: Reverted |
||
Line 10:
Ordinary linear regression predicts the [[expected value]] of a given unknown quantity (the ''response variable'', a [[random variable]]) as a [[linear combination]] of a set of observed values (''predictors''). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e. a ''linear-response model''). This is appropriate when the response variable can vary, to a good approximation, indefinitely in either direction, or more generally for any quantity that only varies by a relatively small amount compared to the variation in the predictive variables, e.g. human heights.
However, these assumptions are inappropriate for some types of response variables.
Similarly, a model that predicts a probability of making a yes/no choice (a [[Bernoulli distribution|Bernoulli variable]]) is even less suitable as a linear-response model, since probabilities are bounded on both ends (they must be between 0 and 1). Imagine, for example, a model that predicts the likelihood of a given person going to the beach as a function of temperature. A reasonable model might predict, for example, that a change in 10 degrees makes a person two times more or less likely to go to the beach. But what does "twice as likely" mean in terms of a probability? It cannot literally mean to double the probability value (e.g. 50% becomes 100%, 75% becomes 150%, etc.). Rather, it is the ''[[odds ratio|odds]]'' that are doubling: from 2:1 odds, to 4:1 odds, to 8:1 odds, etc. Such a model is a ''log-odds or [[Logistic regression|logistic]] model''.
|