Vienna Ab initio Simulation Package: Difference between revisions

Content deleted Content added
No edit summary
Line 23:
The '''Vienna Ab initio Simulation Package''', better known as '''VASP''', is a package written primarily in Fortran for performing [[Ab initio quantum chemistry methods|ab initio]] [[quantum mechanical]] calculations using either Vanderbilt [[pseudopotential]]s, or the [[projector augmented wave method]], and a [[plane wave]] [[basis set (chemistry)|basis set]].<ref>{{cite web|url=http://cms.mpi.univie.ac.at/vasp/ |title=VASP Group, Theoretical Physics Departments, Vienna |author=Georg, Kresse |access-date=February 21, 2011 |date=March 31, 2010}}</ref> The basic methodology is [[density functional theory]] (DFT), but the code also allows use of post-DFT corrections such as [[hybrid functional]]s mixing DFT and [[Hartree–Fock]] exchange (e.g. HSE,<ref>{{Cite journal|last1=Heyd|first1=Jochen|last2=Scuseria|first2=Gustavo E.|last3=Ernzerhof|first3=Matthias|date=2003-05-08|title=Hybrid functionals based on a screened Coulomb potential|url=http://aip.scitation.org/doi/10.1063/1.1564060|journal=The Journal of Chemical Physics|language=en|volume=118|issue=18|pages=8207–8215|doi=10.1063/1.1564060|bibcode=2003JChPh.118.8207H |issn=0021-9606}}</ref> PBE0<ref>{{Cite journal|last1=Perdew|first1=John P.|last2=Ernzerhof|first2=Matthias|last3=Burke|first3=Kieron|date=1996-12-08|title=Rationale for mixing exact exchange with density functional approximations|url=http://aip.scitation.org/doi/10.1063/1.472933|journal=The Journal of Chemical Physics|language=en|volume=105|issue=22|pages=9982–9985|doi=10.1063/1.472933|bibcode=1996JChPh.105.9982P |issn=0021-9606}}</ref> or B3LYP<ref>{{Cite journal|last1=Kim|first1=K.|last2=Jordan|first2=K. D.|date=October 1994|title=Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer|url=https://pubs.acs.org/doi/abs/10.1021/j100091a024|journal=The Journal of Physical Chemistry|language=en|volume=98|issue=40|pages=10089–10094|doi=10.1021/j100091a024|issn=0022-3654}}</ref>), many-body perturbation theory (the [[GW approximation|GW method]]<ref>{{Cite journal |last1=Klimeš |first1=Jiří |last2=Kaltak |first2=Merzuk |last3=Kresse |first3=Georg |date=2014-08-14 |title=Predictive G W calculations using plane waves and pseudopotentials |url=https://link.aps.org/doi/10.1103/PhysRevB.90.075125 |journal=Physical Review B |language=en |volume=90 |issue=7 |pages=075125 |doi=10.1103/PhysRevB.90.075125 |arxiv=1404.3101 |bibcode=2014PhRvB..90g5125K |s2cid=119110222 |issn=1098-0121}}</ref>) and dynamical electronic correlations within the [[random phase approximation|random phase approximation (RPA)]]<ref>{{Cite journal |last1=Kaltak |first1=Merzuk |last2=Klimeš |first2=Jiří |last3=Kresse |first3=Georg |date=2014-08-25 |title=Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si |url=https://link.aps.org/doi/10.1103/PhysRevB.90.054115 |journal=Physical Review B |language=en |volume=90 |issue=5 |pages=054115 |doi=10.1103/PhysRevB.90.054115 |bibcode=2014PhRvB..90e4115K |issn=1098-0121}}</ref> and [[Møller–Plesset perturbation theory|MP2]].<ref>{{Cite journal |last1=Marsman |first1=M. |last2=Grüneis |first2=A. |last3=Paier |first3=J. |last4=Kresse |first4=G. |date=2009 |title=Second-order Mo̸ller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set |url=http://scitation.aip.org/content/aip/journal/jcp/130/18/10.1063/1.3126249 |journal=The Journal of Chemical Physics |language=en |volume=130 |issue=18 |pages=184103 |doi=10.1063/1.3126249|pmid=19449904 |bibcode=2009JChPh.130r4103M }}</ref><ref>{{Cite journal |last1=Schäfer |first1=Tobias |last2=Ramberger |first2=Benjamin |last3=Kresse |first3=Georg |date=2017-03-14 |title=Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis |url=http://aip.scitation.org/doi/10.1063/1.4976937 |journal=The Journal of Chemical Physics |language=en |volume=146 |issue=10 |pages=104101 |doi=10.1063/1.4976937 |pmid=28298118 |arxiv=1611.06797 |bibcode=2017JChPh.146j4101S |s2cid=26397794 |issn=0021-9606}}</ref>
 
Originally, VASP was based on code written by Mike Payne (then at [[Massachusetts Institute of Technology|MIT]]), which was also the basis of [[CASTEP]].<ref>{{cite web|url=http://cms.mpi.univie.ac.at/vasp/vasp/History_VASP.html |title=History of VASP|author=Martijn Marsman |access-date=April 30, 2012 |date=October 14, 2011}}</ref> It was then brought to the [[University of Vienna]], Austria, in July 1989 by [[Jürgen Hafner]]. The main program was written by [[Jürgen Furthmüller]], who joined the group at the [[Institut für Materialphysik]] in January 1993, and Georg Kresse. An early version of VASP was called VAMP.<ref>{{cite journal |last1=Kresse |first1=Georg |last2=Furthmüller |first2=Jürgen |title=Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set |journal=Computational Materials Science |date=July 1996 |volume=6 |issue=1 |pages=15-5015–50 |doi=10.1016/0927-0256(96)00008-0 |url=https://doi.org/10.1016/0927-0256(96)00008-0}}</ref> VASP is currently being developed by [[Georg Kresse]]; recent additions include the extension of methods frequently used in molecular [[quantum chemistry]] to periodic systems.
VASP is currently used by more than 1400 research groups in academia and industry worldwide on the basis of software licence agreements with the University of Vienna.
 
Incomplete version history: VASP.6.3.2 was released on 28 June 2022, VASP.6.4.1 on 7 April, 2023 and VASP.6.4.2 on 20 July, 2023.
 
== See also ==