Content deleted Content added
try to clarify what these expressions mean |
clean up lead section a bit |
||
Line 1:
{{Short description|Expression in mathematical analysis}}
In [[calculus]],
:<math>\begin{align}
Line 7:
\end{align}</math>
and likewise for other arithmetic operations; this is sometimes called the [[limit of a function#Properties|algebraic limit theorem]]. However,
:<math>\frac 00,~ \frac{\infty}{\infty},~ 0\times\infty,~ \infty - \infty,~ 0^0,~ 1^\infty, \text{
where each expression stands for the limit of a function constructed by an arithmetical combination of two functions whose limits respectively tend to {{tmath|0,}} {{tmath|1,}} or {{tmath|\infty}} as indicated.
The most common example of an indeterminate form is the quotient of two functions each of which converges to zero. This indeterminate form is denoted by <math>0/0</math>. For example, as <math>x</math> approaches <math>0
So the fact that two [[function (mathematics)|functions]] <math>f(x)</math> and <math>g(x)</math> converge to <math>0
{{block indent|<math> \lim_{x \to c} \frac{f(x)}{g(x)} .</math>}}
Line 70:
=== Expressions that are not indeterminate forms ===
The expression <math>1/0</math> is not commonly regarded as an indeterminate form, because if the limit of <math>f/g</math> exists then there is no ambiguity as to its value, as it always diverges. Specifically, if <math>f</math> approaches <math>1</math> and <math>g</math> approaches <math>0
# <math>f/g</math> approaches <math>+\infty</math>
Line 78:
In each case the absolute value <math>|f/g|</math> approaches <math>+\infty</math>, and so the quotient <math>f/g</math> must diverge, in the sense of the [[extended real number]]s (in the framework of the [[projectively extended real line]], the limit is the [[Point at infinity|unsigned infinity]] <math>\infty</math> in all three cases<ref name=":3">{{Cite web|url=https://www.cut-the-knot.org/blue/GhostCity.shtml|title=Undefined vs Indeterminate in Mathematics|website=www.cut-the-knot.org|access-date=2019-12-02}}</ref>). Similarly, any expression of the form <math>a/0</math> with <math>a\ne0</math> (including <math>a=+\infty</math> and <math>a=-\infty</math>) is not an indeterminate form, since a quotient giving rise to such an expression will always diverge.
The expression <math>0^\infty</math> is not an indeterminate form. The expression <math>0^{+\infty}</math> obtained from considering <math>\lim_{x \to c} f(x)^{g(x)}</math> gives the limit <math>0
To see why, let <math>L = \lim_{x \to c} f(x)^{g(x)},</math> where <math> \lim_{x \to c} {f(x)}=0,</math> and <math> \lim_{x \to c} {g(x)}=\infty.</math> By taking the natural logarithm of both sides and using <math> \lim_{x \to c} \ln{f(x)}=-\infty,</math> we get that <math>\ln L = \lim_{x \to c} ({g(x)}\times\ln{f(x)})=\infty\times{-\infty}=-\infty,</math> which means that <math>L = {e}^{-\infty}=0.</math>
|