Shortest path problem: Difference between revisions

Content deleted Content added
Directed graph: I changed one index for better representation
Line 111:
! Weights !! Algorithm !! Time complexity !! Author
|-
| <math>\mathbb{R}</math> || || ''<math>O''(''V''<sup> ^2 E L)
</supmath>''EL'') || {{harvnb|Ford|1956}}
|-
| <math>\mathbb{R}</math> || [[Bellman–Ford algorithm]] || ''<math>O''(''VE'') </math>|| {{harvnb|Shimbel|1955}}, {{harvnb|Bellman|1958}}, {{harvnb|Moore|1959}}
|-
| <math>\mathbb{R}</math> || [[Johnson's algorithm|Johnson-Dijkstra]] with [[binary heap]] || ''<math>O''(''V''&nbsp;('' E''&nbsp; +&nbsp; V \log&nbsp;'' V'')) </math>|| {{harvnb|Johnson|1977}}
|-
| <math>\mathbb{R}</math> || [[Johnson's algorithm|Johnson-Dijkstra]] with [[Fibonacci heap]] || ''<math>O''(''V''&nbsp;('' E''&nbsp; +&nbsp; V \log&nbsp;'' V'')) </math>|| {{harvnb|Fredman|Tarjan|1984}}, {{harvnb|Fredman|Tarjan|1987}}, adapted after {{harvnb|Johnson|1977}}
|-
| <math>\mathbb{NZ}</math> || [[Johnson's algorithm|Johnson's technique]] applied to Dial's algorithm<ref name="dial69" /> || ''<math>O''(''V''&nbsp;(''E''&nbsp;+&nbsp;''L'')) </math>|| {{harvnb|Dial|1969}}, adapted after {{harvnb|Johnson|1977}}
|-
|<math>\mathbb{NZ}</math>
|[[Interior-point method]] with Laplacian solver
|<math>O(E^{10/7} \log^{O(1)} V \log^{O(1)} L)</math>
|{{harvnb|Cohen|Mądry|Sankowski|Vladu|2017|Ref=https://doi.org/10.1137/1.9781611974782.48}}
|-
|<math>\mathbb{Z}</math>
|[[Interior-point method]] with <math>\ell_p</math> flow solver
|<math>E^{4/3 + o(1)} \log^{O(1)} L</math>
|{{harvnb|Axiotis|Mądry|Vladu|2020|Ref=https://doi.org/10.1109/FOCS46700.2020.00018}}
|-
|<math>\mathbb{Z}</math>
|Robust [[interior-point method]] with sketching
|<math>O((E + V^{3/2}) \log^{O(1)} V \log^{O(1)} L)</math>
|{{harvnb|van den Brand|Lee|Nanongkai|Peng, Saranurak, Sidford, Song, Wang|2020|Ref=https://doi.org/10.1109/FOCS46700.2020.00090}}
|-
|<math>\mathbb{Z}</math>
|Based on low-diameter decomposition
|<math>O(E \log^8 V \log L)</math>
|{{harvnb|Bernstein|Nanongkai|Wulff-Nilsen|2022}}
|-
|<math>\mathbb{R}</math>
|Hop-limited shortest paths
|<math>O(E V^{8/9} \log^{O(1)} V)</math>
|{{harvnb|Fineman|2023|4=|Ref=https://arxiv.org/abs/2311.02520}}
|}
{{incomplete list|date=December 2012}}
Line 133 ⟶ 154:
! Weights !! Algorithm !! Time complexity !! Author
|-
| <math>\mathbb{Z}</math> || Andrew V. Goldberg || <math>O(E\sqrt{V}\log{N})</math> ||Andrew V. Goldberg
|}