Autoencoder: Difference between revisions

Content deleted Content added
Training an autoencoder: adding missing maths definitions
Yoderj (talk | contribs)
Linkify first mention of variational autoencoders.
Line 5:
An '''autoencoder''' is a type of [[artificial neural network]] used to learn [[Feature learning|efficient codings]] of unlabeled data ([[unsupervised learning]]).<ref name=":12">{{cite journal|doi=10.1002/aic.690370209|title=Nonlinear principal component analysis using autoassociative neural networks|journal=AIChE Journal|volume=37|issue=2|pages=233–243|date=1991|last1=Kramer|first1=Mark A.|url= https://www.researchgate.net/profile/Abir_Alobaid/post/To_learn_a_probability_density_function_by_using_neural_network_can_we_first_estimate_density_using_nonparametric_methods_then_train_the_network/attachment/59d6450279197b80779a031e/AS:451263696510979@1484601057779/download/NL+PCA+by+using+ANN.pdf}}</ref><ref name=":13">{{Cite journal |last=Kramer |first=M. A. |date=1992-04-01 |title=Autoassociative neural networks |url=https://dx.doi.org/10.1016/0098-1354%2892%2980051-A |journal=Computers & Chemical Engineering |series=Neutral network applications in chemical engineering |language=en |volume=16 |issue=4 |pages=313–328 |doi=10.1016/0098-1354(92)80051-A |issn=0098-1354}}</ref> An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an [[Feature learning|efficient representation]] (encoding) for a set of data, typically for [[dimensionality reduction]].
 
Variants exist, aiming to force the learned representations to assume useful properties.<ref name=":0" /> Examples are regularized autoencoders (''Sparse'', ''Denoising'' and ''Contractive''), which are effective in learning representations for subsequent [[Statistical classification|classification]] tasks,<ref name=":4" /> and [[Variational_autoencoder|''Variational'' autoencoders]], with applications as [[generative model]]s.<ref name=":11">{{cite journal |arxiv=1906.02691|doi=10.1561/2200000056|bibcode=2019arXiv190602691K|title=An Introduction to Variational Autoencoders|date=2019|last1=Welling|first1=Max|last2=Kingma|first2=Diederik P.|journal=Foundations and Trends in Machine Learning|volume=12|issue=4|pages=307–392|s2cid=174802445}}</ref> Autoencoders are applied to many problems, including [[face recognition|facial recognition]],<ref>Hinton GE, Krizhevsky A, Wang SD. [http://www.cs.toronto.edu/~fritz/absps/transauto6.pdf Transforming auto-encoders.] In International Conference on Artificial Neural Networks 2011 Jun 14 (pp. 44-51). Springer, Berlin, Heidelberg.</ref> feature detection,<ref name=":2">{{Cite book|last=Géron|first=Aurélien|title=Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow|publisher=O’Reilly Media, Inc.|year=2019|___location=Canada|pages=739–740}}</ref> anomaly detection and acquiring the meaning of words.<ref>{{cite journal|doi=10.1016/j.neucom.2008.04.030|title=Modeling word perception using the Elman network|journal=Neurocomputing|volume=71|issue=16–18|pages=3150|date=2008|last1=Liou|first1=Cheng-Yuan|last2=Huang|first2=Jau-Chi|last3=Yang|first3=Wen-Chie|url=http://ntur.lib.ntu.edu.tw//handle/246246/155195 }}</ref><ref>{{cite journal|doi=10.1016/j.neucom.2013.09.055|title=Autoencoder for words|journal=Neurocomputing|volume=139|pages=84–96|date=2014|last1=Liou|first1=Cheng-Yuan|last2=Cheng|first2=Wei-Chen|last3=Liou|first3=Jiun-Wei|last4=Liou|first4=Daw-Ran}}</ref> Autoencoders are also generative models which can randomly generate new data that is similar to the input data (training data).<ref name=":2" />
 
{{Toclimit|3}}