Unconventional computing: Difference between revisions

Content deleted Content added
Irrelevant information removed. "often women" removed from "In the past, teams of people, often women, were employed..."
Added categorie "Neuromorphic quantum computing", mostly based on the European Union Horizon funded project "Neuromorphic Quantum Computing"
Line 108:
Quantum computing, perhaps the most well-known and developed unconventional computing method, is a type of computation that utilizes the principles of quantum mechanics, such as [[quantum superposition|superposition]] and entanglement, to perform calculations.<ref name="Hidary">{{cite book | last=Hidary | first=Jack | title=Quantum computing : an applied approach | publisher=Springer | publication-place=Cham | date=2019 | isbn=978-3-030-23922-0 | oclc=1117464128 | page=3}}</ref><ref>{{cite book | author1-link= Michael Nielsen| last1=Nielsen |first1=Michael |author2-link = Isaac L. Chuang |last2=Chuang |first2=Isaac |title=[[Quantum Computation and Quantum Information]] |year=2010 |edition=10th anniversary |isbn=978-0-511-99277-3 |oclc= 700706156 |doi=10.1017/CBO9780511976667 | s2cid=59717455 }}</ref> Quantum computers use qubits, which are analogous to classical bits but can exist in multiple states simultaneously, to perform operations. While current quantum computers may not yet outperform classical computers in practical applications, they have the potential to solve certain computational problems, such as integer factorization, significantly faster than classical computers. However, there are several challenges to building practical quantum computers, including the difficulty of maintaining qubits' quantum states and the need for error correction.<ref>{{cite book |doi=10.1007/1-4020-8068-9_8 |chapter=Challenges in Reliable Quantum Computing |title=Nano, Quantum and Molecular Computing |year=2004 |last1=Franklin |first1=Diana |last2=Chong |first2=Frederic T. |pages=247–266 |isbn=1-4020-8067-0 }}</ref><ref>{{cite news |last1=Pakkin |first1=Scott |last2=Coles |first2=Patrick |title=The Problem with Quantum Computers |url=https://blogs.scientificamerican.com/observations/the-problem-with-quantum-computers/ |work=Scientific American |date=10 June 2019}}</ref> Quantum complexity theory is the study of the computational complexity of problems with respect to quantum computers.
 
=== Neuromorphic Quantum computing ===
[[File:Схема криостата МФТИ.jpg|thumb|A quantum computer.]]
Neuromorphic Quantum Computing<ref>{{Cite web |title=Neuromrophic Quantum Computing {{!}} Quromorphic Project {{!}} Fact Sheet {{!}} H2020 |url=https://cordis.europa.eu/project/id/828826 |access-date=2024-03-18 |website=CORDIS {{!}} European Commission |language=en |doi=10.3030/828826}}</ref><ref>{{Citation |last=Pehle |first=Christian |title=Neuromorphic quantum computing |date=2021-03-30 |url=http://arxiv.org/abs/2005.01533 |access-date=2024-03-18 |doi=10.48550/arXiv.2005.01533 |last2=Wetterich |first2=Christof}}</ref> (also known as ‘neuromorphic empowered quantum computing’ or abbreviated as ‘n^quantum computing’) is an [[unconventional computing]] type of computing that uses [[Neuromorphic engineering|neuromorphic computing]] to perform quantum operations. It was suggested that [[Quantum algorithm|quantum algorithms]], which are algorithms that run on a realistic model of [[Quantum computing|quantum computation]], can be computed equally efficiently with neuromorphic quantum computing<ref>{{Cite journal |last=Carleo |first=Giuseppe |last2=Troyer |first2=Matthias |date=2017-02-10 |title=Solving the quantum many-body problem with artificial neural networks |url=https://www.science.org/doi/10.1126/science.aag2302 |journal=Science |language=en |volume=355 |issue=6325 |pages=602–606 |doi=10.1126/science.aag2302 |issn=0036-8075}}</ref><ref>{{Cite journal |last=Torlai |first=Giacomo |last2=Mazzola |first2=Guglielmo |last3=Carrasquilla |first3=Juan |last4=Troyer |first4=Matthias |last5=Melko |first5=Roger |last6=Carleo |first6=Giuseppe |date=2018-05 |title=Neural-network quantum state tomography |url=https://www.nature.com/articles/s41567-018-0048-5 |journal=Nature Physics |language=en |volume=14 |issue=5 |pages=447–450 |doi=10.1038/s41567-018-0048-5 |issn=1745-2481}}</ref><ref>{{Cite journal |last=Sharir |first=Or |last2=Levine |first2=Yoav |last3=Wies |first3=Noam |last4=Carleo |first4=Giuseppe |last5=Shashua |first5=Amnon |date=2020-01-16 |title=Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems |url=https://link.aps.org/doi/10.1103/PhysRevLett.124.020503 |journal=Physical Review Letters |volume=124 |issue=2 |pages=020503 |doi=10.1103/PhysRevLett.124.020503}}</ref><ref>{{Citation |last=Broughton |first=Michael |title=TensorFlow Quantum: A Software Framework for Quantum Machine Learning |date=2021-08-26 |url=http://arxiv.org/abs/2003.02989 |access-date=2024-03-18 |doi=10.48550/arXiv.2003.02989 |last2=Verdon |first2=Guillaume |last3=McCourt |first3=Trevor |last4=Martinez |first4=Antonio J. |last5=Yoo |first5=Jae Hyeon |last6=Isakov |first6=Sergei V. |last7=Massey |first7=Philip |last8=Halavati |first8=Ramin |last9=Niu |first9=Murphy Yuezhen}}</ref><ref>{{Citation |last=Di Ventra |first=Massimiliano |title=MemComputing vs. Quantum Computing: some analogies and major differences |date=2022-03-23 |url=http://arxiv.org/abs/2203.12031 |access-date=2024-03-18 |doi=10.48550/arXiv.2203.12031}}</ref>.
 
Both, traditional [[quantum computing]] and neuromorphic quantum computing are physics-based [[unconventional computing]] approaches to computations and don’t follow the [[von Neumann architecture]]. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the “minimum”. Neuromorphic quantum computing and [[quantum computing]] share similar physical properties during computation<ref>{{Citation |last=Di Ventra |first=Massimiliano |title=MemComputing vs. Quantum Computing: some analogies and major differences |date=2022-03-23 |url=http://arxiv.org/abs/2203.12031 |access-date=2024-03-18 |doi=10.48550/arXiv.2203.12031}}</ref><ref>{{Cite journal |last=Wilkinson |first=Samuel A. |last2=Hartmann |first2=Michael J. |date=2020-06-08 |title=Superconducting quantum many-body circuits for quantum simulation and computing |url=https://doi.org/10.1063/5.0008202 |journal=Applied Physics Letters |volume=116 |issue=23 |doi=10.1063/5.0008202 |issn=0003-6951}}</ref>.[[File:Схема криостата МФТИ.jpg|thumb|A quantum computer.]]
 
===Superconducting computing===