Content deleted Content added
Polyamorph (talk | contribs) m clean up, typo(s) fixed: , → , |
m Changed link from insurance mathematics which didn't exist, to actuarial mathematics |
||
Line 7:
This [[point process]] has convenient mathematical properties,<ref name="Kingman1992">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|date=17 December 1992|publisher=Clarendon Press|isbn=978-0-19-159124-2}}</ref> which has led to its being frequently defined in [[Euclidean space]] and used as a [[mathematical model]] for seemingly random processes in numerous disciplines such as [[astronomy]],<ref name="babu1996spatial">G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy. ''Journal of statistical planning and inference'', 50(3):311–326, 1996.</ref> [[biology]],<ref name="othmer1988models">H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems. ''Journal of mathematical biology'', 26(3):263–298, 1988.</ref> ecology,<ref name="thompson1955spatial">H. Thompson. Spatial point processes, with applications to ecology. ''Biometrika'', 42(1/2):102–115, 1955.</ref> geology,<ref name="connor1995three">C. B. Connor and B. E. Hill. Three nonhomogeneous poisson models for the probability of basaltic volcanism: application to the yucca mountain region, nevada. ''Journal of Geophysical Research: Solid Earth (1978–2012)'', 100(B6):10107–10125, 1995.</ref> [[seismology]],<ref>{{Cite journal|last1=Gardner|first1=J. K.|last2=Knopoff|first2=L.|date=1974|title=Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?|url=https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/64/5/1363/117341/is-the-sequence-of-earthquakes-in-southern|journal=Bulletin of the Seismological Society of America|volume=64|issue=5 |pages=1363–1367|doi=10.1785/BSSA0640051363 |bibcode=1974BuSSA..64.1363G |s2cid=131035597 }}</ref> [[physics]],<ref name="scargle1998studies">J. D. Scargle. Studies in astronomical time series analysis. v. bayesian blocks, a new method to analyze structure in photon counting data. ''The Astrophysical Journal'', 504(1):405, 1998.</ref> economics,<ref name="AghionHowitt1992">P. Aghion and P. Howitt. A Model of Growth through Creative Destruction. ''Econometrica'', 60(2). 323–351, 1992.</ref> [[image processing]],<ref name="bertero2009image">M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini. Image deblurring with poisson data: from cells to galaxies. ''Inverse Problems'', 25(12):123006, 2009.</ref><ref>{{cite web | url=https://caseymuratori.com/blog_0010 | title=The Color of Noise }}</ref> and telecommunications.<ref name="baccelli2009stochastic2">F. Baccelli and B. Błaszczyszyn. ''Stochastic Geometry and Wireless Networks, Volume II- Applications'', volume 4, No 1–2 of ''Foundations and Trends in Networking''. NoW Publishers, 2009.</ref><ref name="Haenggi2009">M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti. Stochastic geometry and random graphs for the analysis and design of wireless networks. ''IEEE JSAC'', 27(7):1029–1046, September 2009.</ref>
The process is named after French mathematician [[Siméon Denis Poisson]] despite Poisson's never having studied the process. Its name derives from the fact that if a collection of random points in some space forms a Poisson process, then the number of points in a region of finite size is a [[random variable]] with a [[Poisson distribution]]. The process was discovered independently and repeatedly in several settings, including experiments on [[radioactive decay]], telephone call arrivals and [[
The Poisson point process is often defined on the [[real line]], where it can be considered as a [[stochastic process]]. In this setting, it is used, for example, in [[queueing theory]]<ref name="Kleinrock1976">{{cite book|author=Leonard Kleinrock|title=Queueing Systems: Theory|url=https://archive.org/details/queueingsystems01klei|url-access=registration|year=1976|publisher=Wiley|isbn=978-0-471-49110-1}}</ref> to model random events, such as the arrival of customers at a store, phone calls at an exchange or occurrence of earthquakes, distributed in time. In the [[Plane (geometry)|plane]], the point process, also known as a '''spatial Poisson process''',<ref name="BaddeleyBárány2006page10">{{cite book|author1=A. Baddeley|author2=I. Bárány|author3=R. Schneider|title=Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004|url=https://books.google.com/books?id=X-m5BQAAQBAJ|date=26 October 2006|publisher=Springer|isbn=978-3-540-38175-4|page=10}}</ref> can represent the locations of scattered objects such as transmitters in a [[wireless network]],<ref name="baccelli2009stochastic2"/><ref name="andrews2010primer">J. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, and S. Weber. A primer on spatial modeling and analysis in wireless networks. ''Communications Magazine, IEEE'', 48(11):156–163, 2010.</ref><ref name="baccelli2009stochastic1">F. Baccelli and B. Błaszczyszyn. ''Stochastic Geometry and Wireless Networks, Volume I – Theory'', volume 3, No 3–4 of ''Foundations and Trends in Networking''. NoW Publishers, 2009.</ref><ref name="Haenggi2013">{{cite book|author=Martin Haenggi|title=Stochastic Geometry for Wireless Networks|url=https://books.google.com/books?id=CLtDhblwWEgC|year=2013|publisher=Cambridge University Press|isbn=978-1-107-01469-5}}</ref> [[particles]] colliding into a detector, or trees in a forest.<ref name="ChiuStoyan2013page51"/> In this setting, the process is often used in mathematical models and in the related fields of spatial point processes,<ref name="BaddeleyBárány2006">{{cite book|author1=A. Baddeley|author2=I. Bárány|author3=R. Schneider|title=Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004|url=https://books.google.com/books?id=X-m5BQAAQBAJ|date=26 October 2006|publisher=Springer|isbn=978-3-540-38175-4}}</ref> [[stochastic geometry]],<ref name="ChiuStoyan2013"/> [[spatial statistics]]<ref name="BaddeleyBárány2006"/><ref name="MollerWaagepetersen2003">{{cite book|author1=Jesper Moller|author2=Rasmus Plenge Waagepetersen|title=Statistical Inference and Simulation for Spatial Point Processes|url=https://books.google.com/books?id=dBNOHvElXZ4C|date=25 September 2003|publisher=CRC Press|isbn=978-0-203-49693-0}}</ref> and [[continuum percolation theory]].<ref name="meester1996continuum">R. Meester and R. Roy. Continuum percolation, volume 119 of cambridge tracts in mathematics, 1996.</ref> The Poisson point process can be defined on more [[Abstraction (mathematics)|abstract]] spaces. Beyond applications, the Poisson point process is an object of mathematical study in its own right.<ref name="Kingman1992"/> In all settings, the Poisson point process has the property that each point is [[stochastically independent]] to all the other points in the process, which is why it is sometimes called a ''purely'' or ''completely'' random process.{{sfnp|Daley|Vere-Jones|2003|page=27}} Modeling a system as a Poisson Process is insufficient when the point-to-point interactions are too strong (i.e. the points are not stochastically independent). Such a system may be better modeled with a different point process.<ref name="ChiuStoyan2013page35">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|date=27 June 2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|pages=35–36}}</ref>
|