Local zeta function: Difference between revisions

Content deleted Content added
The field extension of degree m at the top of the page turned into the extension of degree k at the bottom; I changed them all to k.
Line 1:
In [[number theory]], the '''local zeta function''' {{math|''Z''(''V'', ''s'')}} (sometimes called the '''congruent zeta function''' or the [[Hasse–Weil zeta function]]) is defined as
 
:<math>Z(V, s) = \exp\left(\sum_{mk = 1}^\infty \frac{N_mN_k}{mk} (q^{-s})^mk\right)</math>
 
where {{mvar|V}} is a [[Singular point of an algebraic variety|non-singular]] {{mvar|n}}-dimensional [[projective algebraic variety]] over the field {{math|'''F'''<sub>''q''</sub>}} with {{mvar|q}} elements and {{math|''N''<sub>''mk''</sub>}} is the number of points of {{mvar|''V''}} defined over the finite field extension {{math|'''F'''<sub>''q''<sup>''mk''</sup></sub>}} of {{math|'''F'''<sub>''q''</sub>}}.<ref>Section V.2 of {{Citation
| last=Silverman
| first=Joseph H.
Line 20:
:<math>
\mathit{Z} (V,u) = \exp
\left( \sum_{mk=1}^{\infty} N_mN_k \frac{u^mk}{mk} \right)
</math>
as the [[formal power series]] in the variable <math>u</math>.
Line 29:
</math>
:<math>
(2)\ \ \frac{d}{du} \log \mathit{Z} (V,u) = \sum_{mk=1}^{\infty} N_mN_k u^{mk-1}\ .</math>
 
In other words, the local zeta function {{math|''Z''(''V'',&nbsp;''u'')}} with coefficients in the [[finite field]] {{math|'''F'''<sub>''q''</sub>}} is defined as a function whose [[logarithmic derivative]] generates the number {{math|''N''<sub>''mk''</sub>}} of solutions of the equation defining {{mvar|V}} in the degree {{mvar|mk}} extension {{math|'''F'''<sub>''q''<sup>''mk''</sup></sub>.}}
 
<!--In [[number theory]], a '''local zeta function'''