Local zeta function: Difference between revisions

Content deleted Content added
changed variable u in the first part of the article to t, so as to match the rest of the article
Line 17:
}}</ref>
 
Making the variable transformation {{math|''ut''&nbsp;{{=}}&nbsp;''q''<sup>−''s''</sup>,}} gives
:<math>
\mathit{Z} (V,ut) = \exp
\left( \sum_{k=1}^{\infty} N_k \frac{ut^k}{k} \right)
</math>
as the [[formal power series]] in the variable <math>u</math>.
Line 29:
</math>
:<math>
(2)\ \ \frac{d}{dudt} \log \mathit{Z} (V,ut) = \sum_{k=1}^{\infty} N_k ut^{k-1}\ .</math>
 
In other words, the local zeta function {{math|''Z''(''V'',&nbsp;''ut'')}} with coefficients in the [[finite field]] {{math|'''F'''<sub>''q''</sub>}} is defined as a function whose [[logarithmic derivative]] generates the number {{math|''N''<sub>''k''</sub>}} of solutions of the equation defining {{mvar|V}} in the degree {{mvar|k}} extension {{math|'''F'''<sub>''q''<sup>''k''</sup></sub>.}}
 
<!--In [[number theory]], a '''local zeta function'''
Line 46:
:<math>[ F_k : F ] = k \,</math>,
 
for ''k'' = 1, 2, ... . When ''F'' hasis the unique field with ''q'' elements, ''F<sub>k</sub>'' hasis the unique field with <math>q^k</math> elements. Given a set of polynomial equations &mdash; or an [[algebraic variety]] ''V'' &mdash; defined over ''F'', we can count the number
 
:<math>N_k \,</math>