Content deleted Content added
No edit summary |
No edit summary |
||
Line 31:
:<math> f(x_i,\boldsymbol\beta) \approx f(x_i,0) + \sum_j J_{ij} \beta_j </math>
where <math>J_{ij} = \frac{\partial f(x_i,\boldsymbol\beta)}{\partial \beta_j}</math> are Jacobian matrix elements. It follows from this that the least squares estimators are given by
:<math>\hat{\boldsymbol{\beta}} \approx \mathbf { (J^TJ)^{-1}J^Ty},</math>
|