Content deleted Content added
Citation bot (talk | contribs) Add: pmid, bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Magnetic ordering | #UCB_Category 16/45 |
mNo edit summary |
||
Line 91:
=\frac{5}{2}I+2\sigma_{+1}+\frac{3}{2} \sigma_{0}-3\sigma_{-1}
</math>
Again, <math> \sigma_{-1},\sigma_{0},\sigma_{+1} </math> share the same rotational properties as rank 1 spherical [[harmonic tensors]] <math> Y^{1}_{-1}, Y^{1}_{0}, Y^{1}_{-1} </math>, so it is called spherical super basis.
Because atomic orbitals <math> s,p,d,f </math> are also described by spherical or cubic harmonic functions, one can imagine or visualize these operators using the wave functions of atomic orbitals although they are essentially matrices not spatial functions.
|