Content deleted Content added
No edit summary Tags: Visual edit Mobile edit Mobile web edit |
No edit summary Tags: Visual edit Mobile edit Mobile web edit |
||
Line 35:
=== Improved speed with Localized (cache-like) Computing ===
One of the challenges of DNA computing is its speed. While DNA as a substrate is biologically compatible i.e. it can be used at places where silicon technology cannot, its computation speed is still very slow. For example, the square-root circuit used as a benchmark in field took over 100 hours to complete.<ref name=":5">{{Cite journal|last1=Qian|first1=L.|last2=Winfree|first2=E.|s2cid=10053541|date=2011-06-02|title=Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades|journal=Science|volume=332|issue=6034|pages=1196–1201|doi=10.1126/science.1200520|pmid=21636773|issn=0036-8075|bibcode=2011Sci...332.1196Q}}</ref> While newer ways with external enzyme sources are reporting faster and more compact circuits,<ref name=":6">{{Cite journal|last1=Song|first1=Tianqi|last2=Eshra|first2=Abeer|last3=Shah|first3=Shalin|last4=Bui|first4=Hieu|last5=Fu|first5=Daniel|last6=Yang|first6=Ming|last7=Mokhtar|first7=Reem|last8=Reif|first8=John|date=2019-09-23|title=Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase|journal=Nature Nanotechnology|volume=14|issue=11|pages=1075–1081|doi=10.1038/s41565-019-0544-5|pmid=31548688|issn=1748-3387|bibcode=2019NatNa..14.1075S|s2cid=202729100}}</ref> Chatterjee et al. demonstrated an interesting idea in the field to speed up computation through localized DNA circuits.<ref>{{Cite journal|last1=Chatterjee|first1=Gourab|last2=Dalchau|first2=Neil|last3=Muscat|first3=Richard A.|last4=Phillips|first4=Andrew|last5=Seelig|first5=Georg|date=2017-07-24|title=A spatially localized architecture for fast and modular DNA computing|journal=Nature Nanotechnology|volume=12|issue=9|pages=920–927|doi=10.1038/nnano.2017.127|pmid=28737747|issn=1748-3387|bibcode=2017NatNa..12..920C}}</ref> This concept is being further explored by other groups.<ref name=":9">{{Cite journal|last1=Bui|first1=Hieu|last2=Shah|first2=Shalin|last3=Mokhtar|first3=Reem|last4=Song|first4=Tianqi|last5=Garg|first5=Sudhanshu|last6=Reif|first6=John|date=2018-01-25|title=Localized DNA Hybridization Chain Reactions on DNA Origami|journal=ACS Nano|volume=12|issue=2|pages=1146–1155|doi=10.1021/acsnano.7b06699|pmid=29357217|issn=1936-0851}}</ref> This idea, while originally proposed in the field of computer architecture, has been adopted in this field as well. In computer architecture, it is very well-known that if the instructions are executed in sequence, having them loaded in the cache will inevitably lead to fast performance, also called
=== Renewable (or reversible) DNA computing ===
|