Gate array: Difference between revisions

Content deleted Content added
m Copyediting | Cleaned up using AutoEd
Shirriff link, tweak cites
Line 11:
 
=== Development ===
Gate arrays had several concurrent development paths. [[Ferranti]] in the UK pioneered commercializing [[bipolar transistor|bipolar]] ULA technology,<ref name="bteng198307">{{ cite journal | url=https://archive.org/details/bte-198307/page/n19/mode/2up | title=The Use of Gate Arrays in Telecommunications | journal=British Telecommunications Engineering | last1=Grierson | first1=J. R. | date=July 1983 | access-date=26 February 2021 | volume=2 | issue=2 | pages=78–80 | issn=0262-401X | quote=In the UK, Ferranti, with their bipolar collector diffused isolation (CDI) arrays, pioneered the commercial use of gate arrays and for many years this was by far the most widely used technology. }}</ref> offering circuits of "100 to 10,000 gates and above" by 1983.<ref name="btj198301">{{ cite journal | url=https://archive.org/details/btj-198301/page/n71/mode/1up | title=Everybody's talking about Ferranti ICs. | journal=British Telecom Journal | volume=3 | issue=4 | date=January 1983 | access-date=23 January 2021 }}</ref><ref name="ferranti_quickref">{{ cite book | url=https://archive.org/details/FerrantiQ.RefULA1984/page/n1/mode/1up | title=Ferranti Discrete and Integrated Circuits Quick Reference Guide | publisher=Ferranti plc. | date=1982 | access-date=23 February 2021 | pages=IC4 }}</ref> The company's early lead in semi-custom chips, with the initial application of a ULA integrated circuit involving a camera from [[Rollei]] in 1972, expanding to "practically all European camera manufacturers" as users of the technology, led to the company's dominance in this particular market throughout the 1970s. However, by 1982, as many as 30 companies had started to compete with Ferranti, reducing the company's market share to around 30 percent. Ferranti's "major competitors" were other British companies such as Marconi and Plessey, both of which had licensed technology from another British company, Micro Circuit Engineering.<ref name="heidelberg19821006_ics">{{ cite magazine | url=https://archive.org/details/jprs-report_jprs-82727/page/10/mode/2up | title=Great Britain Develops Semicustom and Custom ICs | magazine=Heidelberg Elektronik Industrie | date=6 October 1982 | access-date=4 March 2022 | last1=Turmaine | first1=Bradley | pages=43–46 }}</ref> A contemporary initiative, UK5000, also sought to produce a CMOS gate array with "5,000 usable gates", with involvement from [[British Telecom]] and a number of other major British technology companies.<ref name="bteng198610_silicon">{{ cite journal | url=https://archive.org/details/bte-198610/page/n41/mode/2up | title=Silicon Micro-Electronics at British Telecom Research Laboratories | journal=British Telecommunications Engineering | date=October 1986 | access-date=4 March 2022 | pages=230–236 }}</ref>
 
[[IBM]] developed proprietary bipolar master slices that it used in mainframe manufacturing in the late 1970s and early 1980s, but never commercialized them externally. [[Fairchild Semiconductor]] also flirted briefly in the late 1960s with bipolar arrays [[diode–transistor logic]] and transistor-transistor logic called Micromosaic and Polycell.<ref name=":0">{{Cite web|url=http://www.computerhistory.org/siliconengine/application-specific-integrated-circuits-employ-computer-aided-design/|title=1967: Application Specific Integrated Circuits employ Computer-Aided Design|websitework=The Silicon Engine|publisher=[[Computer History Museum]]|access-date=2018-01-28}}</ref>
 
[[CMOS]] (complementary [[metal–oxide–semiconductor]]) technology opened the door to the broad commercialization of gate arrays. The first CMOS gate arrays were developed by Robert Lipp<ref name=":1">{{Cite book|url=http://www.computerhistory.org/collections/catalog/102706880|title=Lipp, Bob oral history|websitepublisher=[[Computer History Museum]]|date=14 February 2017 |access-date=2018-01-28}}</ref><ref>{{Cite web|url=http://www.computerhistory.org/siliconengine/people/|title=People|websitework=The Silicon Engine|publisher=Computer History Museum|access-date=2018-01-28}}</ref> in 1974 for International Microcircuits, Inc.<ref name=":0" /> (IMI) a Sunnyvale photo-mask shop started by Frank Deverse, Jim Tuttle and Charlie Allen, ex-IBM employees. This first product line employed [[10 µm process|7.5 micron]] single-level metal CMOS technology and ranged from 50 to 400 [[metal gate|gates]]. [[Computer-aided design]] (CAD) technology at the time was very rudimentary due to the low processing power available, so the design of these first products was only partially automated.
 
This product pioneered several features that went on to become standard in future designs. The most important were: the strict organization of [[NMOS logic|n-channel]] and [[PMOS logic|p-channel transistors]] in 2-3 row pairs across the chip; and running all interconnect on grids rather than minimum custom spacing, which had been the standard until then. This later innovation paved the way to full automation when coupled with the development of 2-layer CMOS arrays. Customizing these first parts was somewhat tedious and error-prone due to the lack of good software tools.<ref name=":0" /> IMI tapped into PC board development techniques to minimize manual customization effort. Chips at the time were designed by hand, drawing all components and interconnecting on precision gridded Mylar sheets, using colored pencils to delineate each processing layer. [[Rubylith]] sheets were then cut and peeled to create a (typically) 200x to 400x scale representation of the process layer. This was then photo-reduced to make a 1x mask. Digitization rather than rubylith cutting was just coming in as the latest technology, but initially, it only removed the rubylith stage; drawings were still manual and then "hand" digitized. PC boards, meanwhile, had moved from custom rubylith to PC tape for interconnects. IMI created to-scale photo enlargements of the base layers. Using decals of logic gate connections and PC tape to interconnect these gates, custom circuits could be quickly laid out by hand for these relatively small circuits, and photo-reduced using existing technologies.
Line 28:
By the early 1980s, gate arrays were starting to move out of their niche applications to the general market. Several factors in technology and markets were converging. Size and performance were increasing; automation was maturing; technology became "hot" when in 1981 IBM introduced its new flagship [[IBM 308X|3081]] mainframe with CPU comprising gate arrays,; they were used in a consumer product, the ZX81; and new entrants to the market increased visibility and credibility.<ref>{{cite book |first=Chris |last=Smith |title=The ZX Spectrum ULA: How To Design A Microcomputer |publisher=ZX Design and Media |oclc=751703922 |date=2010 |isbn=9780956507105 |pages= |url=http://www.zxdesign.info/book/insideULA.shtml}}</ref>
 
In 1981, [[Wilfred Corrigan]], Bill O'Meara, Rob Walker, and Mitchell "Mick" Bohn founded [[LSI Corporation|LSI Logic]].<ref>{{Cite book|url=http://www.computerhistory.org/collections/catalog/102746194|title=LSI Logic oral history panel {{!}} 102746194|websitepublisher=Computer History Museum|date=30 November 2011 |access-date=2018-01-28}}</ref> Their initial intention was to commercialize emitter coupled logic gate arrays, but discovered the market was quickly moving towards CMOS. Instead, they licensed CDI's silicon gate CMOS line as a second source. This product established them in the market while they developed their own proprietary 5-micron 2-layer metal line. This latter product line was the first commercial gate array product amenable to full automation. LSI developed a suite of proprietary development tools that allowed users to design their own chip from their own facility by remote login to LSI Logic's system.
 
[[Sinclair Research]] ported an enhanced [[Sinclair ZX80|ZX80]] design to a ULA chip for the [[Sinclair ZX81|ZX81]], and later used a ULA in the [[ZX Spectrum]]. A compatible chip was made in Russia as T34VG1.<ref>[[:ru:Т34ВГ1|Т34ВГ1]] — article about the ZX Spectrum ULA compatible chip {{in lang|ru}}</ref> [[Acorn Computers]] used several ULA chips in the [[BBC Micro]], and later a single ULA for the [[Acorn Electron]]. Many other manufacturers from the time of the [[home computer]] boom period used ULAs in their machines. The [[IBM PC]] took over much of the personal computer market, and the sales volumes made full-custom chips more economical. Commodore's Amiga series used gate arrays for the Gary and Gayle custom chips, as their code names may suggest.
Line 46:
While the market boomed, profits for the industry were lacking. Semiconductors underwent a series of rolling [[List of recessions in the United States|recessions]] during the 1980s that created a boom-bust cycle. The 1980 and 1981–1982 general recessions were followed by high-interest rates that curbed capital spending. This reduction played havoc on the semiconductor business, that at the time was highly dependent on capital spending. Manufacturers desperate to keep their fab plants full and afford constant modernization in a fast-moving industry became hyper-competitive. The many new entrants to the market drove gate array prices down to the marginal costs of the silicon manufacturers. Fabless companies such as LSI Logic and CDI survived on selling design services and computer time rather than on production revenues.<ref name=":1" />
 
As of the early 21st century, the gate array market was a remnant of its former self, driven by the FPGA conversions done for cost or performance reasons. IMI moved out of gate arrays into mixed-signal circuits and was later acquired by Cypress Semiconductor in 2001; CDI closed its doors in 1989; and LSI Logic abandoned the market in favor of standard products and was eventually acquired by Broadcom.<ref>{{Cite web|url=http://www.computerhistory.org/siliconengine/companies/|title=Companies|websitework=The Silicon Engine|publisher=Computer History Museum|access-date=2018-01-28}}</ref>
 
== Design ==
Line 81:
== External links ==
* {{Commons category-inline|Gate arrays}}
* {{cite web |first=Ken |last=Shirriff |title=Inside an unusual 7400-series chip implemented with a gate array |date=March 2024 |url=http://www.righto.com/2024/03/idt-gate-array.html}}
 
[[Category:Gate arrays| ]]