Superconducting quantum computing: Difference between revisions

Content deleted Content added
Line 26:
 
To obtain a quantum mechanical description of an electrical circuit, a few steps are required. Firstly, all electrical elements must be described by the condensate wave function amplitude and phase rather than by closely related macroscopic [[Electric current|current]] and [[voltage]] descriptions used for classical circuits. For instance, the square of the wave function amplitude at any arbitrary point in space corresponds to the probability of finding a charge carrier there. Therefore, the squared amplitude corresponds to a classical charge distribution. The second requirement to obtain a quantum mechanical description of an electrical circuit is that generalized [[Kirchhoff's circuit laws]] are applied at every node of the circuit network to obtain the system's [[equations of motion]]. Finally, these equations of motion must be reformulated to [[Lagrangian mechanics]] such that a [[Hamiltonian (quantum mechanics)|quantum Hamiltonian]] is derived describing the total energy of the system.
 
==Technology==
 
Line 51 ⟶ 52:
 
==== Fluxonium ====
Fluxonium qubits are a specific type of flux qubit whose Josephson junction is shunted by a linear inductor of <math> E_{J} \gg E_{L} </math> where <math>E_L = (\hbar/2e)^2 / L </math>.<ref name="Nguyen-2019" />. In practice, the linear inductor is usually implemented by a Josephson junction array that is composed of a large number (can be often <math> N > 100 </math>) of large-sized Josephson junctions connected in a series. Under this condition, the Hamiltonian of a fluxonium can be written as:
 
<math>\hat{H} = 4 E_C \hat{n}^2 + \frac{1}{2} E_L (\hat{\phi}- \phi_\mathrm{ext})^2 - E_J \cos \hat{\phi} </math>.
 
One important property of the fluxonium qubit is the longer [[Coherence (physics)#Quantum coherence|qubit lifetime]] at the half flux sweet spot, which can exceed 1 millisecond .<ref name="Nguyen-2019">{{Cite journal |last1=Nguyen |first1=Long B. |last2=Lin |first2=Yen-Hsiang |last3=Somoroff |first3=Aaron |last4=Mencia |first4=Raymond |last5=Grabon |first5=Nicholas |last6=Manucharyan |first6=Vladimir E. |date=25 November 2019 |title=High-Coherence Fluxonium Qubit |url=https://link.aps.org/doi/10.1103/PhysRevX.9.041041 |journal=Physical Review X |language=en |volume=9 |issue=4 |pages=041041 |doi=10.1103/PhysRevX.9.041041 |arxiv=1810.11006 |bibcode=2019PhRvX...9d1041N |s2cid=53499609 |issn=2160-3308}} </ref><ref>{{Cite web |last1=Science |first1=The National University of |last2=MISIS |first2=Technology |title=Fluxonium qubits bring the creation of a quantum computer closer |url=https://phys.org/news/2022-11-fluxonium-qubits-creation-quantum-closer.html |access-date=2022-12-12 |website=phys.org |language=en}}</ref>. Another crucial advantage of the fluxonium qubit biased at the sweet spot is the large anharmonicity, which allows fast local microwave control and mitigates spectral crowding problems, leading to better scalability .<ref name="Nguyen-2020">{{cite thesis |last1=Nguyen |first1=Long B.|title=Toward the Fluxonium Quantum Processor | url = https://www.proquest.com/dissertations-theses/toward-fluxonium-quantum-processor/docview/2455525166/se-2 | publisher = University of Maryland, College Park |date = 2020 |degree = Ph.D.}}</ref><ref name="Nguyen-2022">{{Cite journal |last1=Nguyen |first1=Long B.|last2=Koolstra |first2=Gerwin|last3=Kim |first3=Yosep|last4=Morvan |first4=Alexis|last5=Chistolini |first5=Trevor|last6=Singh |first6=Shraddha|last7=Nesterov |first7=Konstantin N.|last8=Jünger |first8=Christian|last9=Chen |first9=Larry|last10=Pedramrazi |first10=Zahra|last11=Mitchell |first11=Bradley K.|last12=Kreikebaum |first12=John Mark|last13=Puri |first13=Shruti|last14=Santiago |first14=David I.|last15=Siddiqi |first15=Irfan|title=Blueprint for a High-Performance Fluxonium Quantum Processor |url=https://link.aps.org/doi/10.1103/PRXQuantum.3.037001|journal =PRX Quantum |date=5 August 2022 |volume=3 |issue= 3 |pages= 037001 |doi=10.1103/PRXQuantum.3.037001 |bibcode=2022PRXQ....3c7001N |doi-access=free |arxiv=2201.09374}} </ref>.
 
=== Charge qubit ===
Line 89 ⟶ 90:
 
||
[[File:PhaseQBcirc.svg|thumb|Phase qubit circuit. A Josephson junction with energy parameter <math>E_J</math> is biased by current <math>I_0</math>. ]]
 
|-
Line 111 ⟶ 112:
|-
! [[Potential energy|Potential]]
|[[File:Charge qubit potential.svg|thumb|<math>U = -E_J\cos\phi</math> . Bias voltage is set such that <math>N_g=\frac{1}{2}</math>, minimizing the energy gap between <math>|0\rangle</math> and <math>|1\rangle</math>, consequently distinguishing the gap from other energy gaps (e.g. gap between <math>|1\rangle</math> and <math>|2\rangle</math>). The difference in gaps allows addressing transitions from <math>|0\rangle</math> to <math>|1\rangle</math> and vice versa only, without populating other states. ]]
 
||
Line 167 ⟶ 168:
 
===Geometric phase gate===
Higher levels (outside of the computational subspace) of a pair of coupled superconducting circuits can be used to induce a geometric phase on one of the computational states of the qubits. This leads to an entangling conditional phase shift of the relevant qubit states. This effect has been implemented by flux-tuning the qubit spectra <ref name="DiCarlo Chow Gambetta Bishop 2009 pp. 240–244">{{cite journal | last=DiCarlo | first=L. | last2=Chow | first2=J. M. | last3=Gambetta | first3=J. M. | last4=Bishop | first4=Lev S. | last5=Johnson | first5=B. R. | last6=Schuster | first6=D. I. | last7=Majer | first7=J. | last8=Blais | first8=A. | last9=Frunzio | first9=L. | last10=Girvin | first10=S. M. | last11=Schoelkopf | first11=R. J. | title=Demonstration of two-qubit algorithms with a superconducting quantum processor | journal=Nature | publisher=Springer Science and Business Media LLC | volume=460 | issue=7252 | date=2009-06-28 | issn=0028-0836 | doi=10.1038/nature08121 | pages=240–244}}</ref> and by using selective microwave driving .<ref name="Ficheux Nguyen Somoroff Xiong 2021 p. ">{{cite journal | last=Ficheux | first=Quentin | last2=Nguyen | first2=Long B. | last3=Somoroff | first3=Aaron | last4=Xiong | first4=Haonan | last5=Nesterov | first5=Konstantin N. | last6=Vavilov | first6=Maxim G. | last7=Manucharyan | first7=Vladimir E. | title=Fast Logic with Slow Qubits: Microwave-Activated Controlled-Z Gate on Low-Frequency Fluxoniums | journal=Physical Review X | volume=11 | issue=2 | date=2021-05-03 | issn=2160-3308 | doi=10.1103/PhysRevX.11.021026 | page=}}</ref>. Off-resonant driving can be used to induce differential ac-Stark shift, allowing the implementation of all-microwave controlled-phase gates .<ref name="Xiong Ficheux Somoroff Nguyen 2022 p. ">{{cite journal | last=Xiong | first=Haonan | last2=Ficheux | first2=Quentin | last3=Somoroff | first3=Aaron | last4=Nguyen | first4=Long B. | last5=Dogan | first5=Ebru | last6=Rosenstock | first6=Dario | last7=Wang | first7=Chen | last8=Nesterov | first8=Konstantin N. | last9=Vavilov | first9=Maxim G. | last10=Manucharyan | first10=Vladimir E. | title=Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts | journal=Physical Review Research | volume=4 | issue=2 | date=2022-04-15 | issn=2643-1564 | doi=10.1103/PhysRevResearch.4.023040 | page=}}</ref>.
 
===Heisenberg interactions===
The Heisenberg model of interactions, written as
 
<math>\hat{\mathcal{H}}_\mathrm{XXZ}/\hbar =\sum_{ i,j} J_\mathrm{XY}(\hat{\sigma}_\text{x}^{i}\hat{\sigma}_\text{x}^{j} + \hat{\sigma}_\text{y}^{i}\hat{\sigma}_\text{y}^{j}) + J_\mathrm{ZZ}\hat{\sigma}_\text{z}^{i}\hat{\sigma}_\text{z}^{j}</math>,
 
serves as the basis for analog quantum simulation of spin systems and the primitive for an expressive set of quantum gates, sometimes referred to as ''fermionic simulation'' (or ''fSim'') gates. In superconducting circuits, this interaction model has been implemented using flux-tunable qubits with flux-tunable coupling ,<ref name="Foxen Neill Dunsworth Roushan 2020 p. ">{{cite journal | last=Foxen | first=B. | last2=Neill | first2=C. | last3=Dunsworth | first3=A. | last4=Roushan | first4=P. | last5=Chiaro | first5=B. | last6=Megrant | first6=A. | last7=Kelly | first7=J. | last8=Chen | first8=Zijun | last9=Satzinger | first9=K. | last10=Barends | first10=R. | last11=Arute | first11=F. | last12=Arya | first12=K. | last13=Babbush | first13=R. | last14=Bacon | first14=D. | last15=Bardin | first15=J. C. | last16=Boixo | first16=S. | last17=Buell | first17=D. | last18=Burkett | first18=B. | last19=Chen | first19=Yu | last20=Collins | first20=R. | last21=Farhi | first21=E. | last22=Fowler | first22=A. | last23=Gidney | first23=C. | last24=Giustina | first24=M. | last25=Graff | first25=R. | last26=Harrigan | first26=M. | last27=Huang | first27=T. | last28=Isakov | first28=S. V. | last29=Jeffrey | first29=E. | last30=Jiang | first30=Z. | last31=Kafri | first31=D. | last32=Kechedzhi | first32=K. | last33=Klimov | first33=P. | last34=Korotkov | first34=A. | last35=Kostritsa | first35=F. | last36=Landhuis | first36=D. | last37=Lucero | first37=E. | last38=McClean | first38=J. | last39=McEwen | first39=M. | last40=Mi | first40=X. | last41=Mohseni | first41=M. | last42=Mutus | first42=J. Y. | last43=Naaman | first43=O. | last44=Neeley | first44=M. | last45=Niu | first45=M. | last46=Petukhov | first46=A. | last47=Quintana | first47=C. | last48=Rubin | first48=N. | last49=Sank | first49=D. | last50=Smelyanskiy | first50=V. | last51=Vainsencher | first51=A. | last52=White | first52=T. C. | last53=Yao | first53=Z. | last54=Yeh | first54=P. | last55=Zalcman | first55=A. | last56=Neven | first56=H. | last57=Martinis | first57=J. M. | author58=Google AI Quantum | title=Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms | journal=Physical Review Letters | volume=125 | issue=12 | date=2020-09-15 | issn=0031-9007 | doi=10.1103/PhysRevLett.125.120504 | page=}}</ref>, allowing the demonstration of quantum supremacy .<ref name="Arute Arya Babbush Bacon 2019 pp. 505–510">{{cite journal | last=Arute | first=Frank | last2=Arya | first2=Kunal | last3=Babbush | first3=Ryan | last4=Bacon | first4=Dave | last5=Bardin | first5=Joseph C. | last6=Barends | first6=Rami | last7=Biswas | first7=Rupak | last8=Boixo | first8=Sergio | last9=Brandao | first9=Fernando G. S. L. | last10=Buell | first10=David A. | last11=Burkett | first11=Brian | last12=Chen | first12=Yu | last13=Chen | first13=Zijun | last14=Chiaro | first14=Ben | last15=Collins | first15=Roberto | last16=Courtney | first16=William | last17=Dunsworth | first17=Andrew | last18=Farhi | first18=Edward | last19=Foxen | first19=Brooks | last20=Fowler | first20=Austin | last21=Gidney | first21=Craig | last22=Giustina | first22=Marissa | last23=Graff | first23=Rob | last24=Guerin | first24=Keith | last25=Habegger | first25=Steve | last26=Harrigan | first26=Matthew P. | last27=Hartmann | first27=Michael J. | last28=Ho | first28=Alan | last29=Hoffmann | first29=Markus | last30=Huang | first30=Trent | last31=Humble | first31=Travis S. | last32=Isakov | first32=Sergei V. | last33=Jeffrey | first33=Evan | last34=Jiang | first34=Zhang | last35=Kafri | first35=Dvir | last36=Kechedzhi | first36=Kostyantyn | last37=Kelly | first37=Julian | last38=Klimov | first38=Paul V. | last39=Knysh | first39=Sergey | last40=Korotkov | first40=Alexander | last41=Kostritsa | first41=Fedor | last42=Landhuis | first42=David | last43=Lindmark | first43=Mike | last44=Lucero | first44=Erik | last45=Lyakh | first45=Dmitry | last46=Mandrà | first46=Salvatore | last47=McClean | first47=Jarrod R. | last48=McEwen | first48=Matthew | last49=Megrant | first49=Anthony | last50=Mi | first50=Xiao | last51=Michielsen | first51=Kristel | last52=Mohseni | first52=Masoud | last53=Mutus | first53=Josh | last54=Naaman | first54=Ofer | last55=Neeley | first55=Matthew | last56=Neill | first56=Charles | last57=Niu | first57=Murphy Yuezhen | last58=Ostby | first58=Eric | last59=Petukhov | first59=Andre | last60=Platt | first60=John C. | last61=Quintana | first61=Chris | last62=Rieffel | first62=Eleanor G. | last63=Roushan | first63=Pedram | last64=Rubin | first64=Nicholas C. | last65=Sank | first65=Daniel | last66=Satzinger | first66=Kevin J. | last67=Smelyanskiy | first67=Vadim | last68=Sung | first68=Kevin J. | last69=Trevithick | first69=Matthew D. | last70=Vainsencher | first70=Amit | last71=Villalonga | first71=Benjamin | last72=White | first72=Theodore | last73=Yao | first73=Z. Jamie | last74=Yeh | first74=Ping | last75=Zalcman | first75=Adam | last76=Neven | first76=Hartmut | last77=Martinis | first77=John M. | title=Quantum supremacy using a programmable superconducting processor | journal=Nature | publisher=Springer Science and Business Media LLC | volume=574 | issue=7779 | date=2019-10-23 | issn=0028-0836 | doi=10.1038/s41586-019-1666-5 | pages=505–510}}</ref>. In addition, it can also be realized in fixed-frequency qubits with fixed-coupling using microwave drives .<ref>{{cite journal |last1name="Nguyen-2024"/> |first1=L.B.The |last2=KimfSim |first2=Y.gate |last3=Hashimfamily |first3=A.encompasses |last4=Gossarbitrary |first4=N.|last5=MarinelliXY |first5=B.|last6=Bhandariand |first6=B.|last7=DasZZ |first7=D.|last8=Naiktwo-qubit |first8=R.K.|last9=Kreikebaumunitaries, |first9=J.M.|last10=Jordanincluding |first10=A.|last11=Santiagothe |first11=D.I.|last12=SiddiqiiSWAP, |first12=I.the |title=ProgrammableCZ, Heisenbergand interactionsthe betweenSWAP Floquetgates qubits(see [[Quantum logic gate]]).
|journal=Nature Physics |date=16 January 2024 |volume=20 |issue=1 |pages=240-246 |doi=10.1038/s41567-023-02326-7 |bibcode=2024NatPh..20..240N |doi-access=free |arxiv=2211.10383}}
</ref>. The fSim gate family encompasses arbitrary XY and ZZ two-qubit unitaries, including the iSWAP, the CZ, and the SWAP gates (see [[Quantum logic gate]]).
 
==Qubit readout==
Architecture-specific readout, or [[Quantum measurement|measurement]], mechanisms exist. Readout of a phase qubit is explained in the [[#Qubit archetypes|qubit archetypes table]] above. A flux qubit state is often read using an adjustable DC-[[SQUID]] [[magnetometer]]. States may also be measured using an [[electrometer]].<ref name="docs.pennylane.ai">{{Cite web |title=PennyLane Documentation — PennyLane |url=https://docs.pennylane.ai/en/stable/index.html |access-date=2022-12-11 |website=docs.pennylane.ai |language=en}}</ref> A more general readout scheme includes a coupling to a microwave [[resonator]], where resonance frequency of the resonator is dispersively shifted by the qubit state.<ref name=NatRev2017>{{cite journal |last1=Gambetta |first1=Jay M. |last2=Chow |first2=Jerry M. |last3=Steffen |first3=Matthias |title=Building logical qubits in a superconducting quantum computing system |journal=[[npj Quantum Information]] |date=13 January 2017 |volume=3 |issue=1 |pages=2 |doi=10.1038/s41534-016-0004-0 |doi-access=free |bibcode=2017npjQI...3....2G |arxiv=1510.04375 }}
</ref><ref name="Dispersive Readout">{{cite journal |last1=Blais |first1=Alexandre |last2=Huang |first2=Ren-Shou |last3=Wallraff |first3=Andreas |last4=Girvin |first4=Steven |last5=Schoelkopf |first5=Robert |title=Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation |journal=Phys. Rev. A |date=2004 |volume=69 |issue=6 |pages=062320 |doi=10.1103/PhysRevA.69.062320 |url=https://link.aps.org/doi/10.1103/PhysRevA.69.062320|arxiv=cond-mat/0402216 |bibcode=2004PhRvA..69f2320B |s2cid=20427333 }}</ref>. Multi-level systems (qudits) can be readout using electron shelving .<ref name="Cottet Xiong Nguyen Lin 2021 p. ">{{cite journal | last=Cottet | first=Nathanaël | last2=Xiong | first2=Haonan | last3=Nguyen | first3=Long B. | last4=Lin | first4=Yen-Hsiang | last5=Manucharyan | first5=Vladimir E. | title=Electron shelving of a superconducting artificial atom | journal=Nature Communications | publisher=Springer Science and Business Media LLC | volume=12 | issue=1 | date=2021-11-04 | issn=2041-1723 | doi=10.1038/s41467-021-26686-x | page=}}</ref>.
 
==DiVincenzo's criteria==
Line 187 ⟶ 186:
# '''A scalable physical system with well characterized qubits.''' "Well characterized implies that that [[Hamiltonian mechanics|Hamiltonian function]] must be well-defined i.e the energy eigenstates of the qubit should be able to be quantified.. A scalable system is self-explanatory, it indicates that this ability to regulate a qubit should be augmentable for multiple more qubits. Herein lies the major issue Quantum Computers face, as more qubits are implemented it leads to a exponential increase in cost and other physical implementations which pale in comparison to the enhanced speed it may offer.<ref name="qc-at-davis.github.io"/> As superconducting qubits are fabricated on a chip, the many-qubit system is readily scalable. Qubits are allocated on the 2D surface of the chip. The demand for well characterized qubits is fulfilled with (a) qubit non-linearity (accessing only two of the available energy levels) and (b) accessing a single qubit at a time (rather than the entire many-qubit system) by way of per-qubit dedicated control lines and/or frequency separation, or tuning out, of different qubits.
# '''Ability to initialize the state of qubits to a simple fiducial state.'''<ref name="DiVincenzo-2008">{{Cite journal |last=DiVincenzo |first=David |date=February 1, 2008 |title=The Physical Implementation of Quantum Computation |journal=IBM T.J. Watson Research Center|volume=48 |issue=9–11 |pages=771–783 |doi=10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E |arxiv=quant-ph/0002077 |bibcode=2000ForPh..48..771D |s2cid=15439711 }}</ref> A fiducial state is one that is easily and consistently replicable and is useful in quantum computing as it may be used to guarantee the initial state of qubits. One simple way to initialize a superconducting qubit is to wait long enough for the qubits to relax to the ground state. Controlling qubit potential with tuning knobs allows faster initialization mechanisms.
# '''Long relevant decoherence times'''<ref name="DiVincenzo-2008" />'''.''' Decoherence of superconducting qubits is affected by multiple factors. Most decoherence is attributed to the quality of the Josephson junction and imperfections in the chip substrate. Due to their mesoscopic scale, superconducting qubits are relatively short lived. Nevertheless, thousands of gate operations have been demonstrated in these many-qubit systems.<ref>{{cite journal |last1=Devoret |first1=M. H. |last2=Schoelkopf |first2=R. J. |title=Superconducting Circuits for Quantum Information: An Outlook |journal=Science |date=7 March 2013 |volume=339 |issue=6124 |pages=1169–1174 |doi=10.1126/science.1231930|pmid=23471399 |bibcode=2013Sci...339.1169D |s2cid=10123022 }}</ref>. Recent strategies to improve device coherence include purifying the circuit materials and designing qubits with decreased sensitivity to noise sources .<ref name="Nguyen-2019" />.
# '''A “universal” set of quantum gates.'''<ref name="DiVincenzo-2008" /> Superconducting qubits allow arbitrary rotations in the Bloch sphere with pulsed microwave signals, implementing single qubit gates. <math>\sigma_z \sigma_z</math> and <math>\sigma_x \sigma_x</math> couplings are shown for most implementations and for complementing the universal gate set.<ref>{{cite journal |last1=Chow |first1=Jerry M. |last2=Gambetta |first2=Jay M. |last3=Córcoles |first3=A. D. |last4=Merkel |first4=Seth T. |last5=Smolin |first5=John A. |last6=Rigetti |first6=Chad |last7=Poletto |first7=S. |last8=Keefe |first8=George A. |last9=Rothwell |first9=Mary B. |last10=Rozen |first10=J. R. |last11=Ketchen |first11=Mark B. |last12=Steffen |first12=M. |title=Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits |arxiv=1202.5344 |journal=Physical Review Letters |date=9 August 2012 |volume=109 |issue=6 |pages=060501 |doi=10.1103/PhysRevLett.109.060501|pmid=23006254 |bibcode=2012PhRvL.109f0501C |s2cid=39874288 }}</ref><ref>{{cite journal |last1=Niskanen |first1=A. O. |last2=Harrabi |first2=K. |last3=Yoshihara |first3=F. |last4=Nakamura |first4=Y. |last5=Lloyd |first5=S. |last6=Tsai |first6=J. S. |title=Quantum Coherent Tunable Coupling of Superconducting Qubits |journal=Science |date=4 May 2007 |volume=316 |issue=5825 |pages=723–726 |doi=10.1126/science.1141324|pmid=17478714 |bibcode=2007Sci...316..723N |s2cid=43175104 }}</ref><ref name = "Nguyen-2024">{{cite journal |last1=Nguyen |first1=L.B. |last2=Kim |first2=Y. |last3=Hashim |first3=A. |last4=Goss |first4=N.|last5=Marinelli |first5=B.|last6=Bhandari |first6=B.|last7=Das |first7=D.|last8=Naik |first8=R.K.|last9=Kreikebaum |first9=J.M.|last10=Jordan |first10=A.|last11=Santiago |first11=D.I.|last12=Siddiqi |first12=I. |title=Programmable Heisenberg interactions between Floquet qubits
|journal=Nature Physics |date=16 January 2024 |volume=20 |issue=1 |pages=240-246240–246 |doi=10.1038/s41567-023-02326-7 |bibcode=2024NatPh..20..240N |doi-access=free |arxiv=2211.10383}}</ref>. This criterion may also be satisfied by coupling two transmons with a coupling capacitor.<ref name="docs.pennylane.ai" />
# '''Qubit-specific measurement ability.'''<ref name="DiVincenzo-2008" /> In general, single superconducting qubits are used for control or for measurement.
# '''Interconvertibility of stationary and flying qubits.'''<ref name="DiVincenzo-2008" /> While stationary qubits are used to store information or perform calculations, flying qubits transmit information macroscopically. Qubits should be capable of converting from being a stationary qubit to being a flying qubit and vice versa.
Line 232 ⟶ 231:
==References==
{{Reflist}}
 
== Further reading ==
* {{Cite book |title=Principles of Superconducting Quantum Computers |last=Stancil |first=Daniel D. |publisher=John Wiley & Sons|year=2022 |___location=Hoboken, New Jersey |isbn=978-1-119-75072-7 |edition=1st |last2=Byrd |first2=Gregory T. |oclc=1302334194 |id=978-1-119-75074-1 (ebook)}}