Euler's totient function: Difference between revisions

Content deleted Content added
Fixed a typo in the 9th formula. The correct one was taken form the german version, https://de.wikipedia.org/wiki/Eulersche_Phi-Funktion
Line 229:
=\frac3{\pi^2}n^2+O\left(n(\log n)^\frac23(\log\log n)^\frac43\right)</math>&nbsp;(<ref name=Wal1963>{{cite book | zbl=0146.06003 | last=Walfisz | first=Arnold | author-link=Arnold Walfisz | title=Weylsche Exponentialsummen in der neueren Zahlentheorie | language=de | series=Mathematische Forschungsberichte | volume=16 | ___location=Berlin | publisher=[[VEB Deutscher Verlag der Wissenschaften]] | year=1963 }}</ref> cited in<ref>{{citation | last = Lomadse | first = G. | title = The scientific work of Arnold Walfisz | journal = Acta Arithmetica | year = 1964 | volume = 10 | issue = 3 | pages = 227–237 | doi = 10.4064/aa-10-3-227-237 | url = http://matwbn.icm.edu.pl/ksiazki/aa/aa10/aa10111.pdf}}</ref>)</li>
 
<li>\sum_{k=1}^n\varphi(k)
=\frac3{\pi^2}n^2+O\left(n(\log n)^\frac23(\log\log n)^\frac13\right) [Liu (2016)]
</li><li><math>\sum_{k=1}^n\frac{\varphi(k)}{k} = \sum_{k=1}^n\frac{\mu(k)}{k}\left\lfloor\frac{n}{k}\right\rfloor=\frac6{\pi^2}n+O\left((\log n)^\frac23(\log\log n)^\frac43\right)</math>&nbsp;<ref name="Wal1963" /></li>
<li><math>\sum_{k=1}^n\frac{k}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}n-\frac{\log n}2+O\left((\log n)^\frac23\right)</math>&nbsp;<ref name="Sita">{{cite journal|first=R. |last=Sitaramachandrarao |title=On an error term of Landau II |journal=Rocky Mountain J. Math. |volume=15 |date=1985 |issue=2 |pages=579–588|doi=10.1216/RMJ-1985-15-2-579 |doi-access=free }}</ref></li>
<li><math>\sum_{k=1}^n\frac{1}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}\left(\log n+\gamma-\sum_{p\text{ prime}}\frac{\log p}{p^2-p+1}\right)+O\left(\frac{(\log n)^\frac23}n\right)</math>&nbsp;<ref name="Sita" />
 
<p>(where {{mvar|γ}} is the [[Euler–Mascheroni constant]]).</p></li>