Content deleted Content added
m Remove link that redirects back to this page |
|||
Line 2:
In [[computer science]], '''locality-sensitive hashing''' ('''LSH''') is a [[fuzzy hashing]] technique that hashes similar input items into the same "buckets" with high probability.<ref name="MOMD">{{cite web|url=http://infolab.stanford.edu/~ullman/mmds.html|title=Mining of Massive Datasets, Ch. 3.|last1=Rajaraman|first1=A.|last2=Ullman|first2=J.|author2-link=Jeffrey Ullman|year=2010}}</ref> (The number of buckets is much smaller than the universe of possible input items.)<ref name="MOMD" /> Since similar items end up in the same buckets, this technique can be used for [[Cluster analysis|data clustering]] and [[nearest neighbor search]]. It differs from [[Hash function|conventional hashing techniques]] in that [[hash collision]]s are maximized, not minimized. Alternatively, the technique can be seen as a way to [[dimension reduction|reduce the dimensionality]] of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.
Hashing-based approximate [[nearest-neighbor search]] algorithms generally use one of two main categories of hashing methods: either data-independent methods, such as locality-sensitive hashing (LSH); or data-dependent methods, such as
Locality-preserving hashing was initially devised as a way to facilitate [[Pipeline (computing)|data pipelining]] in implementations of [[Parallel RAM|massively parallel]] algorithms that use [[Routing#Path_selection|randomized routing]] and [[universal hashing]] to reduce memory [[Resource contention|contention]] and [[network congestion]].<ref name=Chin1991>{{cite thesis |last=Chin |first=Andrew |date=1991 |title=Complexity Issues in General Purpose Parallel Computing |pages=87–95 |type=DPhil |publisher=University of Oxford |url=https://perma.cc/E47H-WCVP}}</ref><ref name=Chin1994>{{cite journal |last1=Chin |first1=Andrew |date=1994 |title=Locality-Preserving Hash Functions for General Purpose Parallel Computation |url=http://unclaw.com/chin/scholarship/hashfunctions.pdf |journal=Algorithmica |volume=12 |issue=2–3 |pages=170–181 |doi=10.1007/BF01185209|s2cid=18108051 }}</ref>
|