Particular values of the gamma function: Difference between revisions

Content deleted Content added
References: split off Further reading
split off further reading
Tag: Reverted
Line 106:
:<math>\Gamma\left(\tfrac14\right) = \sqrt{2\varpi\sqrt{2\pi}},</math>
 
and it has been conjectured by Gramain<ref>{{Cite thatjournal
|first1=F.
|last1=Gramain
|title=Sur le théorème de Fukagawa-Gel'fond
|journal=Invent. Math.
|volume=63
|number=3
|doi=10.1007/BF01389066
|year=1981
|pages=495&ndash;506
|bibcode=1981InMat..63..495G
|s2cid=123079859
}}</ref> that
<!-- :<math>\log \Gamma(1/4) = \frac{1}{4}(1 + 3 \log \pi + 2 \log 2 + 2 \gamma - \mathrm{\rho})</math> -->
 
Line 113 ⟶ 125:
where {{mvar|δ}} is the [[Masser–Gramain constant]] {{OEIS2C|A086058}}, although numerical work by Melquiond et al. indicates that this conjecture is false.<ref>{{cite journal|doi=10.1090/S0025-5718-2012-02635-4 |first1=Guillaume|last1= Melquiond|first2=W. Georg |last2=Nowak|first3=Paul |last3=Zimmermann|journal=Math. Comp.|title=Numerical approximation of the Masser–Gramain constant to four decimal places|year=2013|volume=82|issue=282|pages=1235–1246|doi-access=free}}</ref>
 
*Borwein and Zucker<ref>{{Cite journal
Borwein and Zucker have found that {{math|Γ({{sfrac|''n''|24}})}} can be expressed algebraically in terms of {{mvar|π}}, {{math|''K''(''k''(1))}}, {{math|''K''(''k''(2))}}, {{math|''K''(''k''(3))}}, and {{math|''K''(''k''(6))}} where {{math|''K''(''k''(''N''))}} is a [[complete elliptic integral of the first kind]]. This permits efficiently approximating the gamma function of rational arguments to high precision using [[quadratic convergence|quadratically convergent]] [[arithmetic–geometric mean]] iterations. For example:
|first1=J. M.
|last1=Borwein
|first2=I. J.
|last2=Zucker
|title=Fast Evaluation of the Gamma Function for Small Rational Fractions Using Complete Elliptic Integrals of the First Kind
|journal=IMA Journal of Numerical Analysis
|volume=12
|issue=4
|pages=519&ndash;526
|year=1992
|mr=1186733
|doi=10.1093/imanum/12.4.519
Borwein and Zucker}}</ref> have found that {{math|Γ({{sfrac|''n''|24}})}} can be expressed algebraically in terms of {{mvar|π}}, {{math|''K''(''k''(1))}}, {{math|''K''(''k''(2))}}, {{math|''K''(''k''(3))}}, and {{math|''K''(''k''(6))}} where {{math|''K''(''k''(''N''))}} is a [[complete elliptic integral of the first kind]]. This permits efficiently approximating the gamma function of rational arguments to high precision using [[quadratic convergence|quadratically convergent]] [[arithmetic–geometric mean]] iterations. For example:
:<math>\begin{align}
\Gamma \left(\tfrac16 \right) &= \frac{\sqrt{\frac{3}{\pi }} \Gamma\left(\frac{1}{3}\right)^2}{\sqrt[3]{2}} \\
Line 257 ⟶ 282:
 
==References==
{{reflist}}
<references />
* {{Cite journal
|first1=F.
|last1=Gramain
|title=Sur le théorème de Fukagawa-Gel'fond
|journal=Invent. Math.
|volume=63
|number=3
|doi=10.1007/BF01389066
|year=1981
|pages=495&ndash;506
|bibcode=1981InMat..63..495G
|s2cid=123079859
}}
 
==Further reading==
* {{Cite journal
|first1=J. M.
|last1=Borwein
|first2=I. J.
|last2=Zucker
|title=Fast Evaluation of the Gamma Function for Small Rational Fractions Using Complete Elliptic Integrals of the First Kind
|journal=IMA Journal of Numerical Analysis
|volume=12
|issue=4
|pages=519&ndash;526
|year=1992
|mr=1186733
|doi=10.1093/imanum/12.4.519
}}
* {{Cite journal
|first1=V. S.