Content deleted Content added
Revert accidental edit |
|||
Line 95:
:<math>\operatorname{MSE} \, \hat{f}(\mathbf{x};\mathbf{H}) = \operatorname{Var} \hat{f}(\mathbf{x};\mathbf{H}) + [\operatorname{E} \hat{f}(\mathbf{x};\mathbf{H}) - f(\mathbf{x})]^2</math>
we have that the MSE tends to 0, implying that the kernel density estimator is (mean square) consistent and hence converges in probability to the true density ''f''. The rate of convergence of the MSE to 0 is the necessarily the same as the MISE rate noted previously ''O''(''n''<sup>−4/(d+4)</sup>), hence the
For the data-based bandwidth selectors considered, the target is the AMISE bandwidth matrix. We say that a data-based selector converges to the AMISE selector at relative rate ''O<sub>p</sub>''(''n''<sup>−''α''</sup>), ''α'' > 0 if
|