Tensor: Difference between revisions

Content deleted Content added
Line 20:
A tensor may be represented as a (potentially multidimensional) array. Just as a [[Vector space|vector]] in an {{mvar|n}}-[[dimension (vector space)|dimensional]] space is represented by a [[multidimensional array|one-dimensional]] array with {{mvar|n}} components with respect to a given [[Basis (linear algebra)#Ordered bases and coordinates|basis]], any tensor with respect to a basis is represented by a multidimensional array. For example, a [[linear operator]] is represented in a basis as a two-dimensional square {{math|''n'' × ''n''}} array. The numbers in the multidimensional array are known as the ''components'' of the tensor. They are denoted by indices giving their position in the array, as [[subscript and superscript|subscripts and superscripts]], following the symbolic name of the tensor. For example, the components of an order {{math|2}} tensor {{mvar|T}} could be denoted {{math|''T''<sub>''ij''</sub>}} , where {{mvar|i}} and {{mvar|j}} are indices running from {{math|1}} to {{mvar|n}}, or also by {{math|''T''{{thinsp}}{{su|lh=0.8|b=''j''|p=''i''}}}}. Whether an index is displayed as a superscript or subscript depends on the transformation properties of the tensor, described below. Thus while {{math|''T''<sub>''ij''</sub>}} and {{math|''T''{{thinsp}}{{su|lh=0.8|b=''j''|p=''i''}}}} can both be expressed as ''n''-by-''n'' matrices, and are numerically related via [[Raising and lowering indices|index juggling]], the difference in their transformation laws indicates it would be improper to add them together.
 
The total number of indices ({{mvar|m}}) required to identify each component uniquely is equal to the ''dimension'' or the number of ''ways'' of an array, which is why ana arraytensor is sometimes referred to as an {{mvar|m}}-dimensional array or an {{mvar|m}}-way array. The total number of indices is also called the ''order'', ''degree'' or ''rank'' of a tensor,<ref name=DeLathauwerEtAl2000 >{{cite journal| last1= De Lathauwer |first1= Lieven| last2= De Moor |first2= Bart| last3= Vandewalle |first3= Joos| date=2000|title=A Multilinear Singular Value Decomposition |journal= [[SIAM J. Matrix Anal. Appl.]]|volume=21|issue= 4|pages=1253–1278|doi= 10.1137/S0895479896305696|s2cid= 14344372|url= https://alterlab.org/teaching/BME6780/papers+patents/De_Lathauwer_2000.pdf}}</ref><ref name=Vasilescu2002Tensorfaces >{{cite book |first1=M.A.O. |last1=Vasilescu |first2=D. |last2=Terzopoulos |title=Computer Vision — ECCV 2002 |chapter=Multilinear Analysis of Image Ensembles: TensorFaces |series=Lecture Notes in Computer Science |volume=2350 |pages=447–460 |doi=10.1007/3-540-47969-4_30 |date=2002 |isbn=978-3-540-43745-1 |s2cid=12793247 |chapter-url=http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf |access-date=2022-12-29 |archive-date=2022-12-29 |archive-url=https://web.archive.org/web/20221229090931/http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf |url-status=dead }}</ref><ref name=KoldaBader2009 >{{cite journal| last1= Kolda |first1= Tamara| last2= Bader |first2= Brett| date=2009|title=Tensor Decompositions and Applications |journal= [[SIAM Review]]|volume=51|issue= 3|pages=455–500|doi= 10.1137/07070111X|bibcode= 2009SIAMR..51..455K|s2cid= 16074195|url= https://www.kolda.net/publication/TensorReview.pdf}}</ref> although the term "rank" generally has [[tensor rank|another meaning]] in the context of matrices and tensors.
 
Just as the components of a vector change when we change the [[basis (linear algebra)|basis]] of the vector space, the components of a tensor also change under such a transformation. Each type of tensor comes equipped with a ''transformation law'' that details how the components of the tensor respond to a [[change of basis]]. The components of a vector can respond in two distinct ways to a [[change of basis]] (see ''[[Covariance and contravariance of vectors]]''), where the new [[basis vectors]] <math>\mathbf{\hat{e}}_i</math> are expressed in terms of the old basis vectors <math>\mathbf{e}_j</math> as,