Content deleted Content added
m Frap moved page Data driven Astronomy to Data-driven astronomy |
WP:MOS |
||
Line 1:
{{Orphan|date=May 2024|att=May 2024|incat=May 2024}}
'''Data-driven
== History ==
In 2007, the [[Galaxy Zoo|Galaxy Zoo project]]<ref>{{Cite web |title=Zooniverse |url=https://www.zooniverse.org/projects/zookeeper/galaxy-zoo |access-date=2024-05-10 |website=www.zooniverse.org}}</ref> was launched for [[Galaxy morphological classification|morphological classification]]<ref>{{Cite journal |last1=Cavanagh |first1=Mitchell K. |last2=Bekki |first2=Kenji |last3=Groves |first3=Brent A. |date=2021-07-08 |title=Morphological classification of galaxies with deep learning: comparing 3-way and 4-way CNNs |journal=Monthly Notices of the Royal Astronomical Society |volume=506 |issue=1 |pages=659–676 |doi=10.1093/mnras/stab1552 |arxiv=2106.01571 |issn=0035-8711}}</ref><ref>{{Cite journal |last1=Goyal |first1=Lalit Mohan |last2=Arora |first2=Maanak |last3=Pandey |first3=Tushar |last4=Mittal |first4=Mamta |date=2020-12-01 |title=Morphological classification of galaxies using Conv-nets |url=https://doi.org/10.1007/s12145-020-00526-w |journal=Earth Science Informatics |language=en |volume=13 |issue=4 |pages=1427–1436 |doi=10.1007/s12145-020-00526-w |issn=1865-0481}}</ref> of a large number of [[Galaxy|galaxies]]. In this project, 900,000 images were considered for classification that were taken from the [[Sloan Digital Sky Survey
== Methodology ==
The data retrieved from the sky surveys are first brought for [[
* The Palomar Digital Sky Survey (DPOSS)<ref>{{Cite web |title=The Palomar Digital Sky Survey (DPOSS) |url=https://sites.astro.caltech.edu/~george/dposs/dposs_pop.html |access-date=2024-05-10 |website=sites.astro.caltech.edu}}</ref>
Line 19:
* [[Square Kilometre Array|The Square Kilometer Array (SKA)]]<ref>{{Cite web |title=Explore {{!}} SKAO |url=https://www.skao.int/en |access-date=2024-05-10 |website=www.skao.int}}</ref>
The size of data from the above-mentioned sky surveys ranges from 3
=== Classification ===
'''''Classification'''''<ref>{{Cite book |last1=Chowdhury |first1=Shovan |last2=Schoen |first2=Marco P. |chapter=Research Paper Classification using Supervised Machine Learning Techniques |date=2020-10-02 |title=2020 Intermountain Engineering, Technology and Computing (IETC) |chapter-url=https://ieeexplore.ieee.org/document/9249211 |publisher=IEEE |pages=1–6 |doi=10.1109/IETC47856.2020.9249211 |isbn=978-1-7281-4291-3}}</ref> is used for specific identifications and categorizations of astronomical data such as [[Stellar classification|Spectral classification]], Photometric classification, Morphological classification, and classification of [[Solar phenomena|solar activity]]. The approaches of classification techniques are listed below:
* [[Artificial
* [[Support vector machine
* [[Learning vector quantization
* [[Decision tree
* [[Random forest
* [[K-nearest neighbors algorithm|
* [[Naive Bayes classifier|Naïve Bayesian
* [[Radial basis function|Radial
* [[Gaussian process
* [[Decision table
* [[Alternating decision tree
=== Regression ===
'''''Regression'''''<ref>{{Citation |last1=Sarstedt |first1=Marko |title=Regression Analysis |date=2014 |work=A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics |pages=193–233 |editor-last=Sarstedt |editor-first=Marko |url=https://doi.org/10.1007/978-3-642-53965-7_7 |access-date=2024-05-10 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-642-53965-7_7 |isbn=978-3-642-53965-7 |last2=Mooi |first2=Erik |editor2-last=Mooi |editor2-first=Erik}}</ref> is used to make predictions based on the retrieved data through statistical trends and statistical modeling. Different uses of this technique are used for fetching [[Photometric redshift]]s and measurements of physical parameters of stars.<ref>{{Cite journal |title=Bulletin de la Société Royale des Sciences de Liège {{!}} PoPuPS |url=https://popups.uliege.be/0037-9565/index.php |journal=Bulletin de la Société Royale des Sciences de Liège |language=fr |issn=0037-9565}}</ref> The approaches are listed below:
* [[Artificial
* [[Support vector regression
* [[Decision tree
* [[Random forest
* [[K-nearest neighbors algorithm|
* [[Kernel regression
* [[Principal component regression
* [[Gaussian process
* [[Linear least squares|Least
* [[Partial least squares regression|Partial
=== Clustering ===
'''''Clustering'''''<ref>{{Cite book |last1=Bindra |first1=Kamalpreet |last2=Mishra |first2=Anuranjan |chapter=A detailed study of clustering algorithms |date=September 2017 |title=2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) |chapter-url=https://ieeexplore.ieee.org/document/8342454 |publisher=IEEE |pages=371–376 |doi=10.1109/ICRITO.2017.8342454 |isbn=978-1-5090-3012-5}}</ref> is classifying objects based on a [[similarity measure]] metric. It is used in Astronomy for Classification as well as [[Object detection|Special/rare object detection]]. The approaches are listed below:
* [[Principal component analysis
* [[DBSCAN
* [[K-means clustering|
* [[OPTICS algorithm|OPTICS]]
* [[Cobweb model]]
* [[Self-organizing map
* [[Expectation–maximization algorithm|Expectation Maximization]]
* [[Hierarchical clustering|Hierarchical Clustering]]
Line 64:
* [[Gaussian process|Gaussian Mixture Modeling (GMM)]]
=== Anomaly
'''''Anomaly
* [[Principal component analysis|Principal Component Analysis (PCA)]]
* [[K-means clustering|
* [[Expectation–maximization algorithm|Expectation Maximization]]
* [[Hierarchical clustering
* [[Support vector machine|One-class SVM]]
=== Time-
'''''Time-Series
* [[Artificial
* [[Support vector regression
* [[Decision tree
==References ==
{{Reflist}}
[[Category:Astrophysics]]
[[Category:Data science]]
[[Category:
[[Category:Machine learning]]
▲[[Category:Statistics]]
[[Category:Mathematics]]
|