Inverse trigonometric functions: Difference between revisions

Content deleted Content added
Tags: Reverted Mobile edit Mobile web edit
Undid revision 1224983591 by 103.61.255.214 (talk): vandalism by vandal.
Tags: Undo Mobile edit Mobile web edit Advanced mobile edit
Line 747:
\end{align}</math>
 
Using the [[Trigonometric functions#Relationship to exponential function (Euler's formula)|exponential definition of sine]], and letting <math>\xi = e^{i \phi}, </math>
 
:<math>\begin{align}
z &= \frac{e^{i \phi} - e^{-i \phi}}{2i} \\[10mu]
2iz &= \xi - \frac{1}{\xi} \\[5mu]
0 &= \xi^2 - 2i z \xi - 1 \\[5mu]
\xi &= iz \pm \sqrt{1 - z^2} \\[5mu]
\phi &= -i \ln \left(iz \pm \sqrt{1 - z^2}\right)
\end{align}</math>
 
(the positive branch is chosen)
 
:<math>\phi= \arcsin(z) = -i \ln \left(iz + \sqrt{1-z^2} \right)</math>
 
{| style="text-align:center;"
|+ [[Domain coloring|Color wheel graphs]] of '''inverse trigonometric functions in the [[complex plane]]'''
| [[Image:Complex Arcsine.svg|275x275px|Arcsine of z in the complex plane.]]
| [[Image:Complex Arccosine.svg|275x275px|Arccosine of z in the complex plane.]]
| [[Image:Complex Arctangent.svg|275x275px|Arctangent of z in the complex plane.]]
|-
| <math>\arcsin(z)</math>
| <math>\arccos(z)</math>
| <math>\arctan(z)</math>
|}
{| style="text-align:center;"
|+
| [[Image:Complex Arccosecant.svg|275x275px|Arccosecant of z in the complex plane.]]
| [[Image:Complex Arcsecant.svg|275x275px|Arcsecant of z in the complex plane.]]
| [[Image:Complex Arccotangent.svg|275x275px|Arccotangent of z in the complex plane.]]
|-
| <math>\arccsc(z)</math>
| <math>\arcsec(z)</math>
| <math>\arccot(z)</math>
|}
 
== Applications ==