Content deleted Content added
→Properties: Inlined the final formula, making the list whole. |
→Examples: Punctuation. |
||
Line 32:
'''Relation to Dirac Delta:''' On 1-dimensional complex Euclidean space <math>\mathbb{C}^1</math> , <math>u(z) = \log|z|</math> is plurisubharmonic. If <math>f</math> is a C<sup>∞</sup>-class function with [[compact support]], then [[Cauchy integral formula]] says
::<math>f(0)=\frac{1}{2\pi i}\int_D\frac{\partial f}{\partial\bar{z}}\frac{dzd\bar{z}}{z},</math>
which can be modified to
::<math>\frac{i}{\pi}\partial\overline{\partial}\log|z|=dd^c\log|z|</math>.
Line 39:
'''More Examples'''
* If <math>f</math> is an analytic function on an open set, then <math>\log|f|</math> is plurisubharmonic on that open set.
* Convex functions are plurisubharmonic.
* If <math>\Omega</math> is a
==History==
|