Content deleted Content added
→Other characterizations: trim unsourced manipulation of unclear significance |
this involves square roots so the math needs to be latex; remove redundant derivation |
||
Line 4:
In [[mathematics]], a '''square triangular number''' (or '''triangular square number''') is a number which is both a [[triangular number]] and a [[square number]]. There are [[Infinity|infinitely many]] square triangular numbers; the first few are:
==Explicit formulas==
Write
Define the ''triangular root'' of a triangular number {{math|''N'' {{=}} {{sfrac|''n''(''n'' + 1)|2}}}} to be {{mvar|n}}. From this definition and the quadratic formula,▼
:<math>n = \frac{\sqrt{8N + 1} - 1}{2}.</math>▼
▲Define the ''triangular root'' of a triangular number
Therefore, {{mvar|N}} is triangular ({{mvar|n}} is an integer) [[if and only if]] {{math|8''N'' + 1}} is square. Consequently, a square number {{math|''M''<sup>2</sup>}} is also triangular if and only if {{math|8''M''<sup>2</sup> + 1}} is square, that is, there are numbers {{mvar|x}} and {{mvar|y}} such that {{math|''x''<sup>2</sup> − 8''y''<sup>2</sup> {{=}} 1}}. This is an instance of the [[Pell equation]] with {{math|''n'' {{=}} 8}}. All Pell equations have the trivial solution {{math|''x'' {{=}} 1, ''y'' {{=}} 0}} for any {{mvar|n}}; this is called the zeroth solution, and indexed as {{math|(''x''<sub>0</sub>, ''y''<sub>0</sub>) {{=}} (1,0)}}. If {{math|(''x<sub>k</sub>'', ''y<sub>k</sub>'')}} denotes the {{mvar|k}}th nontrivial solution to any Pell equation for a particular {{mvar|n}}, it can be shown by the method of descent that▼
:<math>\begin{align}▼
▲Therefore,
x_{k+1} &= 2x_k x_1 - x_{k-1}, \\
y_{k+1} &= 2y_k x_1 - y_{k-1}.
\end{align}</math>}}
Hence there are
:<math>s_k = y_k , \quad t_k = \frac{x_k - 1}{2}, \quad N_k = y_k^2.</math>▼
Hence, the first square triangular number, derived from (3,1), is 1, and the next, derived from {{nowrap|6 × (3,1) − (1,0) {{=}} (17,6)}}, is 36.▼
▲
The sequences {{math|''N''<sub>''k''</sub>}}, {{math|''s''<sub>''k''</sub>}} and {{math|''t''<sub>''k''</sub>}} are the [[OEIS]] sequences {{OEIS2C|id=A001110}}, {{OEIS2C|id=A001109}}, and {{OEIS2C|id=A001108}} respectively.▼
▲Hence, the first square triangular number, derived from <math>(3,1)</math>, is <math>1</math>, and the next, derived from
▲The sequences
In 1778 [[Leonhard Euler]] determined the explicit formula<ref name=Dickson>
Line 28 ⟶ 34:
{{cite journal |last=Euler |first=Leonhard |author-link=Leonhard Euler |year=1813 |title=Regula facilis problemata Diophantea per numeros integros expedite resolvendi (An easy rule for Diophantine problems which are to be resolved quickly by integral numbers) |journal=Mémoires de l'Académie des Sciences de St.-Pétersbourg |volume= 4 |pages=3–17 |url=http://math.dartmouth.edu/~euler/pages/E739.html |language=la |access-date=2009-05-11 |quote=According to the records, it was presented to the St. Petersburg Academy on May 4, 1778.}}
</ref>{{Rp|12–13}}
</math>}}
Other equivalent formulas (obtained by expanding this formula) that may be convenient include
N_k &= \tfrac{1}{32} \left( \left( 1 + \sqrt{2} \right)^{2k} - \left( 1 - \sqrt{2} \right)^{2k} \right)^2 \\
&= \tfrac{1}{32} \left( \left( 1 + \sqrt{2} \right)^{4k}-2 + \left( 1 - \sqrt{2} \right)^{4k} \right) \\
&= \tfrac{1}{32} \left( \left( 17 + 12\sqrt{2} \right)^k -2 + \left( 17 - 12\sqrt{2} \right)^k \right).
\end{align}</math>}}
The corresponding explicit formulas for
:<math>\begin{align}▼
s_k &= \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}}, \\
t_k &= \frac{\left(3 + 2\sqrt{2}\right)^k + \left(3 - 2\sqrt{2}\right)^k - 2}{4}.
\end{align}</math>}}
==Recurrence relations==
Line 75 ⟶ 57:
There are [[recurrence relation]]s for the square triangular numbers, as well as for the sides of the square and triangle involved. We have<ref>{{MathWorld|title=Square Triangular Number|urlname=SquareTriangularNumber}}</ref>{{Rp|(12)}}
N_k &= 34N_{k-1} - N_{k-2} + 2,& \text{with }N_0 &= 0\text{ and }N_1 = 1; \\
N_k &= \left(6\sqrt{N_{k-1}} - \sqrt{N_{k-2}}\right)^2,& \text{with }N_0 &= 0\text{ and }N_1 = 1.
\end{align}</math>}}
We have<ref name=Dickson /><ref name=Euler />{{Rp|13}}
s_k &= 6s_{k-1} - s_{k-2},& \text{with }s_0 &= 0\text{ and }s_1 = 1; \\
t_k &= 6t_{k-1} - t_{k-2} + 2,& \text{with }t_0 &= 0\text{ and }t_1 = 1.
\end{align}</math>}}
==Other characterizations==
All square triangular numbers have the form
{{cite book | last1 = Ball | first1 = W. W. Rouse |author-link1 = W. W. Rouse Ball | last2 = Coxeter | first2 = H. S. M. |author-link2 = Harold Scott MacDonald Coxeter | title = Mathematical Recreations and Essays | url = https://archive.org/details/mathematicalrecr00coxe | url-access = limited | publisher = Dover Publications | ___location = New York | year = 1987 | page = [https://archive.org/details/mathematicalrecr00coxe/page/n72 59]| isbn = 978-0-486-25357-2 }}
</ref>
A. V. Sylwester gave a short proof that there are infinitely many square triangular numbers: If the
{{bi|left=1.6|<math>\displaystyle\frac{\bigl( 4n(n+1) \bigr) \bigl( 4n(n+1)+1 \bigr)}{2} = 4 \, \frac{n(n+1)}{2} \,\left(2n+1\right)^2.</math>}}
|