Nyquist–Shannon sampling theorem: Difference between revisions

Content deleted Content added
m Aliasing: add whitespace between math formula and {{EquationRef}} template
m Shannon's original proof: add whitespace between math formula and {{EquationRef}} template
Line 100:
:because <math>X(\omega)</math> is assumed to be zero outside the band <math>\left|\tfrac{\omega}{2\pi}\right| < B.</math>&nbsp; If we let <math>t = \tfrac{n}{2B},</math> where <math>n</math> is any positive or negative integer, we obtain:
 
{{Equation box 1|title=
|indent=: |cellpadding= 0 |border= 0 |background colour=white
|indent =
|equation = {{NumBlk|:|
|title=
|equation = {{NumBlk|::|<math>x \left(\tfrac{n}{2B} \right) = {1 \over 2\pi} \int_{-2\pi B}^{2\pi B} X(\omega) e^{i\omega {n \over {2B}}}\;{\rm d}\omega.</math> &nbsp; &nbsp;
|{{EquationRef|Eq.2}}}}
}}
|cellpadding= 6
|border=0
|border colour = white
|background colour=white}}
 
:On the left are values of <math>x(t)</math> at the sampling points. The integral on the right will be recognized as essentially{{