Content deleted Content added
Made many factual corrections |
No edit summary |
||
Line 29:
<math>\rho_t^c(\mathbf{K}, \omega) = \left\langle \rho^c_i\right\rangle_\mathrm{geom} \left\langle \frac{\rho^c(\mathbf{K})}{\frac{1}{N_c} \sum_{i}\rho_i^c}\right\rangle_\mathrm{arit}</math>
4. Calculate the cluster typical Green’s function <math>G_t^c(\mathbf{K})</math> from the [[Kramers–Kronig relations|Kramers Kronig transform]] of the density of states, used to compute the coarse-grained Green’s function:
<math>\bar{G}(\mathbf{K}) = \frac{N_c}{N} \sum_{\tilde{k}} \left[\left(G^c_t(\mathbf{K})^{-1} + \Gamma(\mathbf{K}) - H_0(k) + \bar{H}_0(\mathbf{K}) + \mu\right)^{-1}\right]</math>
5. Obtain a new hybridization function based on a mixture of old and updated functions, with the linear mixing parameter <math>\zeta</math>:
|