Content deleted Content added
→Usage in science and engineering: Replaced x<<1 by |x|<<1. |
m copy edit |
||
Line 14:
In the case of a [[smooth function]], the ''n''th-order approximation is a [[polynomial]] of [[degree of a polynomial|degree]] ''n'', which is obtained by truncating the Taylor series to this degree. The formal usage of ''order of approximation'' corresponds to the omission of some terms of the [[Series_(mathematics)|series]] used in the [[Series_expansion|expansion]]. This affects [[Accuracy_and_precision|accuracy]]. The error usually varies within the interval. Thus the terms (''zeroth'', ''first'', ''second,'' etc.) used above meaning do not directly give information about [[percent error]] or [[significant figures]]. For example, in the [[w:Taylor's theorem|Taylor series]] expansion of the [[Exponential_function#Formal_definition|exponential function]],
<math display="block">e^x=\underbrace{1}_{0^\text{th}}+\underbrace{x}_{1^\text{st}}+\underbrace{\frac{x^2}{2!}}_{2^\text{nd}}+\underbrace{\frac{x^3}{3!}}_{3^\text{rd}} + \underbrace{\frac{x^4}{4!}}_{4^\text{th}} + \ldots\;, </math>
the zeroth-order term is <math>1;</math> the first-order term is <math>x,</math> second-order is <math>x^2/2,</math> and so forth. If <math>x<1,</math> each higher order term is smaller than the previous. If the absolute value of <math>x</math> is very small <math>(|x|<<1)</math>, then the first order approximation,
<math display="block">e^x\approx 1+x, </math>
is often sufficient. But at <math>x=1,</math> the first-order term, <math>x,</math> is not smaller than the zeroth-order term, <math>1.</math> And at <math>x=2,</math> even the second-order term, <math>2^3/3!=4/3,\,</math> is greater than the zeroth-order term.
|