Content deleted Content added
Removing link(s) to "Statistical parsing": Removing links to deleted page Statistical parsing. |
Rescuing 4 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (AManWithNoPlan - 19964 |
||
Line 4:
The '''Viterbi algorithm''' is a [[dynamic programming]] [[algorithm]] for obtaining the [[Maximum a posteriori estimation|maximum a posteriori probability estimate]] of the most [[likelihood function|likely]] sequence of hidden states—called the '''Viterbi path'''—that results in a sequence of observed events. This is done especially in the context of [[Markov information source]]s and [[hidden Markov model]]s (HMM).
The algorithm has found universal application in decoding the [[convolutional code]]s used in both [[CDMA]] and [[GSM]] digital cellular, [[dial-up]] modems, satellite, deep-space communications, and [[802.11]] wireless LANs. It is now also commonly used in [[speech recognition]], [[speech synthesis]], [[diarization]],<ref>Xavier Anguera et al., [http://www1.icsi.berkeley.edu/~vinyals/Files/taslp2011a.pdf "Speaker Diarization: A Review of Recent Research"] {{Webarchive|url=https://web.archive.org/web/20160512200056/http://www1.icsi.berkeley.edu/~vinyals/Files/taslp2011a.pdf |date=2016-05-12 }}, retrieved 19. August 2010, IEEE TASLP</ref> [[keyword spotting]], [[computational linguistics]], and [[bioinformatics]]. For example, in [[speech-to-text]] (speech recognition), the acoustic signal is treated as the observed sequence of events, and a string of text is considered to be the "hidden cause" of the acoustic signal. The Viterbi algorithm finds the most likely string of text given the acoustic signal.
== History ==
Line 146:
* {{cite book |vauthors=Feldman J, Abou-Faycal I, Frigo M |chapter=A fast maximum-likelihood decoder for convolutional codes |title=Proceedings IEEE 56th Vehicular Technology Conference |volume=1 |pages=371–375 |year=2002 |doi=10.1109/VETECF.2002.1040367|isbn=978-0-7803-7467-6 |citeseerx=10.1.1.114.1314 |s2cid=9783963 }}
* {{cite journal |doi=10.1109/PROC.1973.9030 |author=Forney GD |title=The Viterbi algorithm |journal=Proceedings of the IEEE |volume=61 |issue=3 |pages=268–278 |date=March 1973 }} Subscription required.
* {{Cite book | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | ___location=New York | isbn=978-0-521-88068-8 | chapter=Section 16.2. Viterbi Decoding | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=850 | access-date=2011-08-17 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=850 | url-status=dead }}
* {{cite journal |author=Rabiner LR |title=A tutorial on hidden Markov models and selected applications in speech recognition |journal=Proceedings of the IEEE |volume=77 |issue=2 |pages=257–286 |date=February 1989 |doi=10.1109/5.18626|citeseerx=10.1.1.381.3454 |s2cid=13618539 }} (Describes the forward algorithm and Viterbi algorithm for HMMs).
* Shinghal, R. and [[Godfried Toussaint|Godfried T. Toussaint]], "Experiments in text recognition with the modified Viterbi algorithm," ''IEEE Transactions on Pattern Analysis and Machine Intelligence'', Vol. PAMI-l, April 1979, pp. 184–193.
Line 162:
* [https://github.com/xukmin/viterbi C++]
* [http://pcarvalho.com/forward_viterbi/ C#]
* [http://www.cs.stonybrook.edu/~pfodor/viterbi/Viterbi.java Java] {{Webarchive|url=https://web.archive.org/web/20140504055101/http://www.cs.stonybrook.edu/~pfodor/viterbi/Viterbi.java |date=2014-05-04 }}
* [https://adrianulbona.github.io/hmm/ Java 8]
* [https://juliahub.com/ui/Packages/HMMBase/8HxY5/ Julia (HMMBase.jl)]
* [https://metacpan.org/module/Algorithm::Viterbi Perl]
* [http://www.cs.stonybrook.edu/~pfodor/viterbi/viterbi.P Prolog] {{Webarchive|url=https://web.archive.org/web/20120502010115/http://www.cs.stonybrook.edu/~pfodor/viterbi/viterbi.P |date=2012-05-02 }}
* [https://hackage.haskell.org/package/hmm-0.2.1.1/docs/src/Data-HMM.html#viterbi Haskell]
* [https://github.com/nyxtom/viterbi Go]
|