Content deleted Content added
→External links: markup |
|||
Line 99:
In the 1970s, many physicists became interested in [[supergravity]] theories, which combine general relativity with supersymmetry. Whereas general relativity makes sense in any number of dimensions, supergravity places an upper limit on the number of dimensions.<ref>[[#Duff1998|Duff]], p. 64</ref> In 1978, work by [[Werner Nahm]] showed that the maximum spacetime dimension in which one can formulate a consistent supersymmetric theory is eleven.<ref name=Nahm/> In the same year, [[Eugene Cremmer]], [[Bernard Julia]], and [[Joël Scherk]] of the [[École Normale Supérieure]] showed that supergravity not only permits up to eleven dimensions but is in fact most elegant in this maximal number of dimensions.<ref name=Cremmer/><ref name="Duff 1998, p. 65">[[#Duff1998|Duff]], p. 65</ref>
Initially, many physicists hoped that by compactifying [[eleven-dimensional supergravity]], it might be possible to construct realistic models of our four-dimensional world. The hope was that such models would provide a unified description of the four fundamental forces of nature: electromagnetism, the [[strong nuclear force|strong]] and [[weak nuclear force]]s, and gravity. Interest in eleven-dimensional supergravity soon waned as various flaws in this scheme were discovered. One of the problems was that the laws of physics appear to distinguish between clockwise and counterclockwise, a phenomenon known as [[chirality (physics)|chirality]]. Edward Witten and others observed this chirality property cannot be readily derived by compactifying from eleven dimensions.<ref name="Duff 1998, p. 65"/>
In the [[first superstring revolution]] in 1984, many physicists turned to string theory as a unified theory of particle physics and quantum gravity. Unlike supergravity theory, string theory was able to accommodate the chirality of the standard model, and it provided a theory of gravity consistent with quantum effects.<ref name="Duff 1998, p. 65"/> Another feature of string theory that many physicists were drawn to in the 1980s and 1990s was its high degree of uniqueness. In ordinary particle theories, one can consider any collection of elementary particles whose classical behavior is described by an arbitrary [[Lagrangian (field theory)|Lagrangian]]. In string theory, the possibilities are much more constrained: by the 1990s, physicists had argued that there were only five consistent supersymmetric versions of the theory.<ref name="Duff 1998, p. 65"/>
|