Interior-point method: Difference between revisions

Content deleted Content added
Fixed a spelling error (program was spelt progarm
Details: fixed typo - apporimate to approximate
Line 70:
To use the interior-point method, we need a [[self-concordant barrier]] for ''G''. Let ''b'' be an ''M''-self-concordant barrier for ''G'', where ''M''≥1 is the self-concordance parameter. We assume that we can compute efficiently the value of ''b'', its gradient, and its [[Hessian matrix|Hessian]], for every point x in the interior of ''G''.
 
For every ''t''>0, we define the ''penalized objective'' '''f<sub>t</sub>(x) := ''c''<sup>T</sup>''x +'' b(''x'')'''. We define the path of minimizers by: '''x*(t) := arg min f<sub>t</sub>(x)'''. We apporimateapproximate this path along an increasing sequence ''t<sub>i</sub>''. The sequence is initialized by a certain non-trivial two-phase initialization procedure. Then, it is updated according to the following rule: <math>t_{i+1} := \mu \cdot t_i</math>.
 
For each ''t<sub>i</sub>'', we find an approximate minimum of ''f<sub>ti</sub>'', denoted by ''x<sub>i</sub>''. The approximate minimum is chosen to satisfy the following "closeness condition" (where ''L'' is the ''path tolerance''):<blockquote><math>\sqrt{[\nabla_x f_t(x_i)]^T [\nabla_x^2 f_t(x_i)]^{-1} [\nabla_x f_t(x_i)]} \leq L</math>.</blockquote>To find ''x<sub>i</sub>''<sub>+1</sub>, we start with ''x<sub>i</sub>'' and apply the [[damped Newton method]]. We apply several steps of this method, until the above "closeness relation" is satisfied. The first point that satisfies this relation is denoted by ''x<sub>i</sub>''<sub>+1</sub>.<ref name=":0" />{{Rp|___location=Sec.4}}